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Abstract

In order for reinforcement learning systems to learn quickly
in vast action spaces such as the space of all possible pieces of
text or the space of all images, leveraging human intuition and
creativity is key. However, a human-designed action space is
likely to be initially imperfect and limited; furthermore, hu-
mans may improve at creating useful actions with practice
or new information. Therefore, we propose a framework in
which a human adds actions to a reinforcement learning sys-
tem over time to boost performance. In this setting, however,
it is key that we use human effort as efficiently as possible,
and one significant danger is that humans waste effort adding
actions at places (states) that aren’t very important. There-
fore, we propose Expected Local Improvement (ELI), an au-
tomated method which selects states at which to query hu-
mans for a new action. We evaluate ELI on a variety of simu-
lated domains adapted from the literature, including domains
with over a million actions and domains where the simulated
experts change over time. We find ELI demonstrates excellent
empirical performance, even in settings where the synthetic
“experts” are quite poor.

1 Introduction
Consider building a system to decide which hint to give a
student playing an educational game, what to say to a user
of a spoken dialog system, or what pictorial ad to show to
generate the most revenue for a small business. In domains
such as these, the space of all possible actions (pieces of
text, soundwaves, or images) is far too large to explore from
scratch without unreasonable quantities of data. A typical
reinforcement learning (RL) approach is for human prac-
titioners to first use their intuition and creativity to create
a small set of discrete actions, and then use reinforcement
learning techniques to learn to behave near-optimally within
this more tractable space.

However, this initial action set is likely to be limited and
highly imperfect, and so the performance of even the truly
optimal policy with respect to the limited action space may
be far below what is truly achievable. Because of this, we
desire systems that add new actions to the set over time to
come closer to optimal performance. Indeed, in practice it is
common to try to improve performance further by creating
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new content, for example by writing new lines of dialog or
designing new ads.

Unfortunately, automatic guidance on this process has
been extremely limited. It has typically been the task of do-
main experts to determine not just what new content to pro-
duce, but where to produce it. For example, experts must de-
termine where to add a new line of dialog in a dialog system
or a new hint in a educational game. In an RL framework, we
can think of this as selecting the state where the next action
should be added. Unfortunately, this task is difficult, as it re-
quires the human to possess substantial amounts of domain
expertise, machine learning expertise, and be able to under-
stand large quantities of data. Ideally, we could develop au-
tomated methods that answer this question, deciding where
to direct human effort to best maximize performance.

Related work in human-in-the-loop reinforcement learn-
ing has looked at where to query experts for demonstrations.
A significant amount of work has focused on on querying
the expert in a different setting where the agent’s goal is
merely to imitate (Chernova and Veloso 2009; Judah et al.
2014). Related work by Clouse 1996 studied at which state
a reinforcement learning agent should query an imperfect
expert for advice in an existing action set. However, this is
a very different setting, as the assumption is that the human,
though not perfect, can perform the task fairly well, and that
the action space is sufficiently small to be amenable to au-
tonomous exploration.

In this paper, we propose Expected Local Improvement
(ELI), as a heuristic to select the state where the next action
should be added. ELI intelligently combines data gathered
by a reinforcement learning algorithm, knowledge of the
structure of the reinforcement learning problem (if present)
and the behavior of the human experts it is interacting with
to select states that will be most likely to boost perfor-
mance. Although the ultimate goal is to run ELI with real
humans on important real-world problems, similar to prior
work (Clouse 1996; Amir et al. 2016) we evaluate algo-
rithms in settings where both the RL environment and the
“human” expert are simulated, as this allows for inexpensive
and well-controlled comparisons. We find that ELI performs
well across a variety of domains adapted from the literature,
including a domain with over a million actions, a domain
where the experts improve over time, and even a domain
where the experts are quite poor.
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Figure 1: Proposed Human-in-the-Loop RL framework, in
which a human provides new actions in response to state
queries. Here we focus on the design of the state selector.

2 Problem Setup
Although there has been much recent work focusing on the
problem of effective generalization over a large, high di-
mensional state space in reinforcement learning, this task
becomes much more complicated when the set of actions
is not fixed but can be extended. As such, in this paper we
focus on the more traditional RL setting where a relatively
small, discrete state space is known. Although we wish to
consider Markov Decision Process (MDP) environments, a
typical “tabula rasa” MDP setting does not fit many real-
world scenarios where more structure is known.1 Therefore,
similar to past work (Leffler, Littman, and Edmunds 2007;
Asmuth et al. 2009; Mandel et al. 2016), we consider MDP
domains where dynamics are specified in terms of relative
outcomes.2 Specifically, we assume a discrete state space
S and a set of relative outcomes O. We assume experience
comes in episodes of maximum length τ . The agent starts
with at least one action in A0s for each s. At the start of the
`th episode, generally A`,s = A`−1,s. However, if the hu-
man decides it is time to add a new action, the agent must
pick a state s from S, and the human proceeds to add an ac-
tion3 toA`,s. During the course of the `th episode, the agent
is at a state s ∈ S , takes an action a ∈ As,` and receives
an outcome o ∈ O. The agent knows the reward function
R(s, o) which deterministically outputs a scalar reward, and
the transition function T (s, o), which deterministically out-
puts a next state s′. However, it does not know the distribu-
tion over relative outcomes at each state and action, nor the
process by which the human generates actions. The goal of
the agent is to learn from experience to maximize the sum
of rewards over time, both by picking good actions in the
existing set during an episode and by selecting good states
at which to add actions. In this paper, we assume the former
task is handled by a traditional reinforcement learning algo-
rithm and focus on developing new algorithms for the latter
problem. For convenience, let S = |S|, A` = maxs |As,`|,
andO = |O|. An overview of the considered framework can
be seen in Figure 1.

1For example, consider a gridworld where we know an agent
can go in cardinal directions, and we know the location of the goal
state but not where the walls are.

2Note, however, that in principle outcomes can encode any
MDP with discrete rewards and states.

3We also allow humans to add extra actions at other states, e.g.
if they feel the action they developed is appropriate elsewhere.

3 Related work
Active Imitation Learning One related setting is active im-
itation learning (Grollman and Jenkins 2007; Chernova and
Veloso 2009; Judah, Fern, and Dietterich 2011; Silver, Bag-
nell, and Stentz 2012; Judah et al. 2014). Here the agent’s
goal is to query an expert for demonstrations at states that
will best help it improve its performance. However, in this
setting the agent is not trying to optimize an external reward
function, just imitate the expert, and therefore the challenges
involved in combining autonomous reinforcement learning
with human expertise do not arise. Additionally, state-of-
the-art work in this area (Judah et al. 2014) assumes the ac-
tion space is small and the experts are deterministic, making
the techniques proposed ill-suited for our purpose.

Interactive/Human-in-the-Loop Reinforcement
Learning There have been several studies of how humans
should collaborate with reinforcement learning agents.
Several interesting types of human feedback have been
considered: Reward signals (Thomaz and Breazeal 2006),
policy quality information (Griffith et al. 2013), entire
trajectories (Gil, Stern, and Edan 2009), and more. We
are only aware of very limited work (in the bandit set-
ting) considering added actions (Abernethy et al. 2013;
Williams et al. 2016), which did not consider automated
guidance on where to add actions.

Some work has focused on the related problem of decid-
ing at which state to query expert for advice on the next ac-
tion to take. For instance, Doshi-Velez et al. 2008 studies
this problem but assumes the expert is perfect and the re-
ward signal is inaccurate. Most closely related to our work is
Clouse 1996, who proposes a heuristic method to determine
when (at what state) an imperfect expert should be asked for
advice in an online RL setting. The setting is different as
Clouse deals with giving advice in an existing (small) ac-
tion space, whereas we consider where one should extend
the action space. In addition, the proposed heuristic asks for
states at which the agent is uncertain, which does not make
sense in our setting, since if we are uncertain about the val-
ues of the current actions at some state we should refrain
from adding additional actions until we are more certain.

Large Action Spaces We propose leveraging human intu-
ition to enable rapid learning in vast action spaces. However,
an alternative approach is to use function approximation
to generalize over a large action space. Work in large dis-
crete action spaces has typically assumed actions are featur-
ized in a highly informative way (Sallans and Hinton 2004;
Dulac-Arnold et al. 2015) and can still show poor perfor-
mance when learning from scratch without prior knowledge.
Past work in learning in large action continuous control
problems (Lillicrap et al. 2016) exploits knowledge of phys-
ical principles and large amounts of simulator data.

In the domain of conversational agents, related work has
learned which actions to consider taking from a corpus of
human conversations (Li et al. 2016). However, this work
focuses on making use of a passively collected dataset of ac-
tions, we show in this paper we can do better by intelligently
directing human effort.4

4An additional advantage to adding actions online is that infor-



4 Expected Local Improvement (ELI)
To ground our discussion, we assume that each state s is as-
sociated with an (unknown) distribution over actions with
pdf ps(x), so that when we request an action at s the expert
draws a (possibly continuous) action x sampled i.i.d. accord-
ing to ps(x). 5 In some settings this stochastic assumption is
reasonable, but in others it may not be, such as experts learn-
ing to improve the provided actions over time. We will em-
pirically evaluate robustness to improving experts, as well
as show a non-starving property (Lemma 1) under weaker
assumptions.

Although our goal is to select states optimally under un-
certainty, this is not a straightforward application of a stan-
dard exploration/exploitation approach (e.g. bandits), since:

• We wish to leverage the structure of the underlying RL
problem to select states intelligently, instead of treating
the problem in a tabula rasa fashion.

• When a bandit algorithm encounters a positive reward, it
is inclined to keep selecting the action that led to that re-
ward. But here, a positive (high-value) action means just
the opposite: we have found an action that performs well
at this state so we should avoid selecting this state in favor
of trying to improve performance elsewhere.

• Typical bandit algorithms learn the mean of the reward
distribution, but here optimal behavior depends on higher
moments of the action distribution. For example, imagine
the action distributions at s1 and s2 are distributed nor-
mally (in terms of the action values) with identical means,
but the distribution at s1 has much higher variance than
that at s2. Then we should greatly prefer to select s1 as
we are much more likely to get a high-value action.

• We need to consider the uncertainty not just over the un-
known distribution of new actions but also the unknown
values of existing actions.

We desire methods that carefully direct human effort
boost performance quickly, but not at the expense of long-
term performance. Additionally, we want a heuristic that is
scalable and easy to compute, without, for example, requir-
ing explicitly planning over sequences of action additions.6

One heuristic that seems natural to consider is greedily
adding the action that maximizes expected global improve-
ment. However, here greediness becomes a significant detri-
ment to long-term performance, as we are not incentivized
to add actions that do not immediately improve performance
but instead open up pathways to new states that have the po-
tential to be high-value after adding more actions.

Perhaps surprisingly, a less global approach alleviates this
issue. We propose maximizing the expected local improve-

mation such as values of the current actions can be displayed to
humans, to hopefully guide them to produce better actions.

5In some settings, such as text, the action space is finite or
countably infinite, in which case we could use probabilities and
sums instead of pdfs and integrals. However, here we solely con-
sider the continuous case to simplify exposition.

6One could consider casting the problem in a Bayesian RL-type
framework (e.g. (Wang et al. 2005; Whittle 1981)). However, the
computational expense of this approach is prohibitive.

ment (ELI), that is, selecting the state s where adding the
next action most improves the (optimal) value V (s). For-
mally, we define the ELI of state s as follows:∫

(V (s|x,As,`)− V (s|As,`))ps(x)dx (1)

where V (s|x,As,`) is optimal value we would get at state s
given our current set of actions and an additional action x.

This will result in a bottom up approach, where values of
states where there is a high potential for immediate reward
will be improved first and, once they are improved, we try
to add actions to other states that transition to the high-value
leaves. One potential downside of this approach is that we
may prioritize adding actions at states that are (near) impos-
sible to reach. However, in practice our approach for dealing
with unknown dynamics alleviates this issue (see below).

Now, observe that for x such that V (s|x,As,`) =
V (s|As,`) (i.e. actions which do not improve the value) the
integral is zero so it suffices to take the integral over x such
that V (s|x,As,`) > V (s|As,`):∫

(V (s|x,As,`)− V (s|As,`))ps(x)dx (2)

=

∫
x:V (s|x,As,`)>V (s|As,`)

(V (s|x,As,`)− V (s|As,`))ps(x)dx

(3)

Next, consider estimating V (s|x,As,`). An underestimate
is dangerous here, as it may lead to ignoring (starving) states
where there is a large potential for improvement. Therefore
we follow the well-known principle of optimism under un-
certainty, and overestimate the improvement by Vmax(s) =
maxx V (s|x,As,`), which is easy to compute with discrete
outcomes as long as we have a way of estimating V (s|As,`)
for future states (see below). This gives us:∫

x:V (s|x,As,`)>V (s|As,`)

(V (s|x,As,`)− V (s|As,`))ps(x)dx

(4)

≤
∫
x:V (s|x,As,`)>V (s|As,`)

(Vmax(s)− V (s|As,`))ps(x)dx (5)

=(Vmax(s)− V (s|As,`))

∫
x:V (s|x,As,`)>V (s|As,`)

ps(x)dx

(6)

=(Vmax(s)− V (s|As,`))P (V (s|x,As,`) > V (s|As,`)) (7)

However, calculating this requires estimating two unknown
quantities: P (V (s|x,As,`) > V (s|As,`)) and V (s|As,`).
We discuss how this can be done below.

Estimating the value of existing actions
Let us first consider estimating V (s|As,`), the value of a
state given existing actions. Intuitively, if we don’t know if
the existing actions are high-value it seems wasteful to add
another action there. Therefore, we propose using an opti-
mistic estimate of the current value (and thus underestimate
how much improvement is left). At first this seems contra-
dictory, as we were trying to overestimate the improvement.
However, we must consider the source of the uncertainty.



If the source is a low number of added actions, using the
principle of optimism under uncertainty we should overes-
timate the improvement of the next action, as adding an ad-
ditional action will reduce uncertainty. But if the source is
a low number of samples of existing actions, we should ap-
ply the principle of optimism under uncertainty again to the
values of existing actions, as even though we cannot directly
act there, when the RL algorithm does it will reduce our un-
certainty. These two forms of optimism under uncertainty in
ELI act synergistically by properly accounting for the source
of the uncertainty and selecting states accordingly.

An additional benefit of overestimating V (s|As,`) is that
we will not select (nearly) impossible to reach states because
we are extremely uncertain about their current values.

Fortuitously, the task of optimistically estimating the
value of a transition/reward distribution given limited sam-
ples has been well-studied in the RL community as a way to
drive exploration. These methods deal with optimistic long-
term value in a simple dynamic programming fashion; cal-
culating the optimistic V (s, t) by treating the previously-
calculated optimistic V (s, t + 1) as fixed and calculating
an optimistic outcome distribution for each (s, a, t) tuple.
The key difference among methods is in how the optimistic
outcome distribution is calculated. We try a number of ap-
proaches for this component (see the appendix7 for details):

UCRL Following UCRL2 (Jaksch, Ortner, and Auer
2010), this computes the most optimistic outcome distribu-
tion subject to the constraint that the L1 norm varies from

the MLE by at most
√

14 log(SA`τ`/δ)
max(N,1) where ` is the number

of episodes, N is the number of transition samples, and δ is
a user-specified confidence parameter we set to 0.05 follow-
ing Osband et al. 2013.

MBIE Adapting a version of MBIE (Strehl and Littman
2004; 2008) to our setting, this computes the most optimistic
outcome distribution subject to the constraint that the L1

norm varies from the MLE by at most
√

2 log((2O−2)/δ)
max(N,1) .

(Optimistic) Thompson Sampling This weakly opti-
mistic approach (Thompson 1933; May et al. 2012) draws
a single sample from the posterior over outcome distribu-
tions under the constraint that the sample has greater value
than the expected value under the posterior.

BOSS This approach (Asmuth et al. 2009) samples from
the posterior over outcome distributions J times and returns
the sample with maximum value. We set J = 10 based on
the results in Asmuth et al. 2009.

Of all the optimistic estimators, BOSS seems most attrac-
tive, since it combines prior information with a significant
amount of optimism. Therefore for simplicity of exposition,
we hereafter refer to ELI-BOSS as just ELI.

Estimating the probability of improvement
We now examine estimating P (V (s|x,As,`) > V (s|As,`)).
A naı̈ve approach is to replace this probability by 1 to triv-
ially upper bound the integral, which intuitively corresponds

7The appendix can be found at
http://grail.cs.washington.edu/projects/stateselection/

to optimistically believing the next action will certainly re-
sult in a (maximal) improvement, avoiding i.i.d assumptions.
The issue here becomes that the non-starving property is
clearly violated, as we may simply sample the same state
forever if no improvement is truly possible. A simple way to
ensure this problem does not occur is simply to set a limit of
L, such that we move on to another state if the selected state
already has L actions. If all visited states have L actions we
increment L. In general, it is unclear how to initialize L, so
we set the minimum L of 1, allowing L to grow automati-
cally to find the best value. We call this method ELI-Limit.

Intuitively, however, if we have selected a state numerous
times already, it seems unlikely the next action will result
in an improvement. To formalize this intuition, we define a
binary variableXm for eachm such thatXm = 1 if the next
action has Q-value greater than m and Xm = 0 otherwise.
Now, since Xm is binary, we can learn it in a Bayesian fash-
ion using a Beta(αm + n1m, βm + n0m) posterior where
αm and n1m represent the prior psuedocount and observed
count of actions with Q-value greater than m, and likewise
βm and n0m represent the prior psuedocount and observed
count of actions with Q-value less than m. For the prior we
let αm = βm = 1 for all m, which corresponds to one
pseudocount of maximum and minimum Q-value. Now in
particular we are interested in the probability of further im-
provement, which corresponds to lettingm be the maximum
value over the existing actions (m = maxa∈As,`

Q(s, a)).
Therefore, after |As,`| added actions our posterior over the
probability of improvement is Beta(1, |As,`| + 1) regard-
less of the Q-values.8 Note that for a fixed m, the observed
Q-values do matter, but since we keep changing m to be the
maximum Q-value seen so far, the variable of concern Xm

keeps changing, and so they do not.
Given this posterior distribution over θ =

P (V (s|x,As,`) > V (s|As,`)), a Bayesian approach
is to integrate the objective function over all possible values
of θ weighted by their posterior probability P (θ|As,`).
Specifically, this changes equation (7) into:∫

(Vmax(s)− V̂ (s|As,`))θP (θ|As,`)dθ (8)

=(Vmax(s)− V̂ (s|As,`))
∫
θP (θ|As,`)dθ (9)

=(Vmax(s)− V̂ (s|As,`))E[θ|As,`] (10)

where the last line comes simply from the definition
of expectation. The expected value of θ under our
Beta(1, |As,`| + 1) posterior derived above is simply

1
|As,`|+2 . So the overall ELI heuristic is:

=
1

|As,`|+ 2
(Vmax(s)− V̂ (s|As,`)) (11)

Since we are in a finite-horizon setting, values depend not
just on s but on s, t. Our RL setting is undiscounted, so we

8Note that this is not correct in the edge case where we al-
ready have an action with maximum value, as the probability of
improvement there should always be zero. However, in that case
(Vmax(s)− V̂ (s|As,`)) should be zero resulting in zero score.



simply sum up the scores for each s, t to generate an overall
score for each s, and select the state with maximum score.

One property we desire is that ELI does not starve states
as long as there is possible improvement remaining. This is
a fairly weak property, as we could achieve it (at the cost of
performance) by mixing in an ε-amount of uniformly ran-
dom state selection. Intuitively, it seems as though ELI al-
ready has this property, as it does not starve states as long
as there is still some difference between V̂ (s) and Vmax(s).
However, if the human adds rapidly adds large numbers of
actions to all successor states s′ of s and they are insuffi-
ciently explored, their values may go to Vmax(s′) (because
we take the max over a larger and larger set of random sam-
ples) and so (since V̂ (s) is defined in terms of the V̂ (s′)) it is
possible that there becomes less and less difference between
V̂ (s) and Vmax(s) even if we do not add further actions at s.
So showing ELI does not starve states as long as there is pos-
sible improvement is a bit nontrivial and requires additional
assumptions. We do not wish to restrict the RL algorithm or
the behavior of the human (w.r.t. action timings etc.), so we
prove ELI is non-starving in a fairly general class of envi-
ronments similar (just slightly more restricted) to previous
posterior sampling work by Osband et al. 2013.

Lemma 1. (Non-starving) Consider ELI using a prior dis-
tribution f which consists of an independent Dirichlet prior
on outcome distributions of αi = c for some c > 0. As-
sume for a given ε > 0, after Nε actions are added to
each state, additional actions improve the value of each
state by at most ε. Let C be an arbitrary class of models
with Nε actions which has non-zero probability under our
chosen prior. Assume that the true model M for the first
Nε actions is drawn from C according to f(M |C).Finally,
assume that for each s there exists o1, o2 ∈ O such that
T (s, o1) = T (s, o2);R(s, o1) 6= R(s, o2). Then, as the
number of actions added by ELI goes to infinity, our ELI
approach will eventually uncover actions at each state such
that the optimal policy in the MDP with added actions is at
least ε-optimal (with respect to the full set of actions).

Proof sketch (full proof in appendix): The only way for us
to starve a state is for its ELI score to go to zero. Since we
only select it a finite number of times, the only way for this to
occur is if V̂ (s, t) approaches Vmax(s, t). But the cases such
that this occurs have zero probability under the posterior.

5 Simulations
We show results using both simulated environments and
simulated humans, similar to prior work (Clouse 1996;
Amir et al. 2016), as this allows us to compare algorithms in
an inexpensive and well-controlled setting. Each state starts
with a single action (similar to real-world settings where
there is already a default strategy) and every 20 episodes a
new action is added at the state the agent selects. We trans-
form standard domains to this new setting by sampling a
new (or initial) action uniformly at random from the ground
space of actions, unless otherwise specified. Even with a
fairly small space of ground actions, this is still a challeng-
ing problem, as (for example) the agent may unknowingly

get the same suboptimal action repeatedly and need to se-
lect a state many times to get the optimal action.9 All result
graphs are averaged over 1000 runs.

ELI leaves open the choice of underlying RL algorithm.
We use Posterior Sampling Reinforcement Learning (PSRL)
(Osband, Russo, and Van Roy 2013; Strens 2000) due to its
ability to explore efficiently. An additional advantage is that
some variants of ELI can share the posterior used for PSRL.

We constrain all methods to only select states the agent
has visited before.10 We compare variations of ELI, Ran-
dom, which selects a visited state uniformly at random, and
Frequency, which selects states with probability propor-
tional to the number of times they have been visited (i.e.,
explored) by the RL algorithm.

We examine performance on three environments adapted
from the literature. Riverswim is a chain MDP with 6 states,
5 outcomes, and 2 ground actions per state that requires effi-
cient exploration (Osband, Russo, and Van Roy 2013). Mar-
blemaze (Asmuth et al. 2009; Russell and Norvig 1994) is
a gridworld MDP with 36 states, 5 outcomes, and 4 ground
actions per state that allows significant prior knowledge to
be encoded in the outcomes framework. We use a modi-
fied version of the Large Action Task (Sallans and Hinton
2004), an environment with 13 states, 273 outcomes, and
220 ground actions per state, a ground action space far too
large to explore directly. Details of these domains are in the
appendix.

Comparing algorithms The results in Riverswim (Figure
2) show that all variants of ELI except ELI-UCRL outper-
form the Random and Frequency baselines. In fact, we see
that Frequency underperforms Random, because it focuses
too heavily on high traffic states where no improvement is
possible. ELI-UCRL likely underperforms due to its con-
servative confidence intervals, as it avoids selecting states
unless they have been extremely well-sampled. We see ELI-
Limit performs worse than our refined approach based on
the Beta posterior. In this setting, however, the more strongly
optimistic ELI-MBIE approach does seems to slightly out-
perform the proposed BOSS method, which in part indicates
that our adapted MBIE confidence intervals are a better fit
for our setting than the ones used in UCRL2.

In Marblemaze (Figure 3) we see similar trends to River-
swim, except that the boost in performance from Random
to ELI is extremely large, and ELI also shows a large im-
provement over ELI-Limit. The performance improvements
come from the fact that that ELI is able to leverage the small
space of outcomes to focus on adding actions at states that
are likely to be part of the optimal path to the goal.

In the Large Action Task (Figure 4) ELI again shows a
strong improvement over random, and performs as well or
better than the other ablated baselines. Here Frequency does
better than Random, indicating that focusing on high-traffic
states plays a much bigger role in proper selection than in

9We may be able to prevent humans from duplicating an action,
but there is still the possibility that humans generate an action with
a very similar outcome distribution, which is roughly equivalent.

10This is partially motivated by the fact that in real-world do-
mains it may be difficult to visualize unvisited states to humans.
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Figure 2: Riverswim results with a small
outcome space.
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Figure 3: Marblemaze results with a
small outcome space.
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Figure 4: Results on the large-action task
with random action generation.
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Figure 5: Marble Maze Results with a
large outcome space.
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Figure 6: Results on the Large-Action
task with improving action generation.
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Figure 7: Results on the Large-Action
task with poor action generation.

Riverswim and Marblemaze, which makes sense as states in
this environment are unlikely to come close to their max-
imal values and so re-sampling is usually valuable. ELI-
MBIE, which performed very well in riverswim and mar-
blemaze, performs quite poorly here. We suspect this has to
do with the larger set of outcomes used in the large action
task, which we study with our next experiment.

Informative vs Uninformative Outcomes Although in
some scenarios a small and informative set of outcomes is
known, in other settings we unfortunately do not know this
additional structure. To test how performance changes in this
setting we modified the marblemaze setup to have 96 out-
comes, one for each possible reward and next state (see ap-
pendix). In Figure 5 we see that although using uninforma-
tive outcomes did decrease the gap between ELI and Ran-
dom compared to the informative outcomes case in Figure
3, ELI still performs quite well. These results confirm the
poor performance of ELI-MBIE in large outcome spaces,
which turns out to be due to the fact that the confidence in-
terval used in MBIE causes it to become far too optimistic
when the number of possible outcomes becomes large. The
BOSS method does not suffer from this issue, though it is
still optimistic enough to outperform ELI-Thompson here.

Different types of experts We now test a simulated ex-
pert who improves over time. When queried at a state the
expert generates an action with equal (50%) or better (50%)
immediate reward compared to the best action added at this
state so far (details in appendix). In Figure 6 we see that even
though this setting is nonstationary and does not match the

assumptions built when designing ELI, the ELI method still
manages to perform well, outperforming both Random and
Frequency baselines. Though the ELI-Limit method does
not explicitly make these assumptions it does not manage
to improve upon ELI here.

Often, human-in-the-loop RL approaches are thought to
only be helpful if the human has enough expertise to per-
form the task reasonably well. To examine this we simulate
a “poor” expert, where the probability of generating an ac-
tion decreases linearly as the immediate reward of that ac-
tion increases (see appendix). For reference we display per-
formance without action addition, and also ELI-NoLearn,
which counterfactually measures how performance of a uni-
form random policy changes as ELI (fed with data from
PSRL) adds actions. In Figure 7 we see that adding actions
even at the states recommended by ELI simply worsens the
quality of a random policy. Yet because the simulated human
has a small probability of returning something high-value,
the agent is able to leverage this to achieve excellent perfor-
mance in this setting, especially when using ELI.

6 Conclusion
In this paper we propose a new framework for human-in-
the-loop reinforcement learning, where an automated agent
leverages human intuition to learn effectively in vast action
spaces. We identify a key challenge in this space, namely se-
lecting a state at which to develop a new action, and present
a new algorithm, Expected Local Improvement (ELI), which
effectively addresses this challenge. Note that although we



have focused on this specific challenge, there are many other
practical issues that arise when implementing a Human-in-
the-Loop RL system similar to Figure 1 with real humans.
For example, what UIs and visualizations cause humans to
develop the most useful actions in response to a request?
Or, how constrained should the language of actions be? Or,
how should we guide humans on when (not just where) they
should add actions? Future work will study these questions.
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