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Abstract

This paper leverages occluding contours (aka “inter-
nal silhouettes”) to improve the performance of multi-view
stereo methods. The contributions are 1) a new technique
to identify free-space regions arising from occluding con-
tours, and 2) a new approach for incorporating the resulting
free-space constraints into Poisson surface reconstruction
[14]. The proposed approach outperforms state of the art
MVS techniques for challenging Internet datasets, yielding
dramatic quality improvements both around object contours
and in surface detail.

1. Introduction

Object silhouettes provide remarkably strong shape cues;
a single silhouette constrains the entire volume of 3D space
that projects outside of it to be “empty.” Combined with im-
age intensity cues, silhouettes have been shown to greatly
enhance the output of multi-view stereo (MVS) methods
particularly for low-textured scene regions [10, 20]. How-
ever, as the focus of 3D reconstruction research has shifted
out of the lab and into “the wild,” [1, 6] silhouettes have
become less relevant, as it is not clear how to define, much
less separate, the “background.” E.g., for applications like
city modeling (Google Maps and Apple Maps), there is no
concept of a silhouette as the goal is to reconstruct the entire
scene.

Occluding contours, aka “internal silhouettes,” provide
similarly powerful shape cues but in a much more general
setting, without the need to define a background. An oc-
cluding contour corresponds to a boundary in the image
between an object surface (e.g., part of a statue) and an-
other surface further away (e.g., wall) that it partially oc-
cludes. In principle, occluding contours could be leveraged
similarly to silhouettes, to identify regions of empty space
between closer and more distant surfaces. The main chal-
lenge, however, is that identifying such free-space regions
requires accurate reconstructions of both the foreground and
the background surface to start with, i.e., it’s a chicken-and-
egg problem. For example, both statues and walls are hard
to reconstruct due to lack of texture, and give rise to incom-
plete or noisy models, complicating the inference of free

space and occluding contours.
Our contributions are 1) a new technique to identify free-

space regions arising from occluding contours, and 2) an ap-
proach for incorporating the resulting free-space constraints
into surface reconstruction. Our approach is based on ex-
trapolating free space using the assumption that piece-wise
constant image regions have simple (quadric) surface ge-
ometry. While this type of assumption is commonly used in
stereo methods to interpolate nearby surface geometry, e.g.,
[19], prior work has not considered the effects that the in-
terpolated geometry has on free-space and how to globally
propagate this free-space information across the scene in a
globally consistent and noise-robust manner. To this end,
we introduce free-space voting into the Poisson Surface
Reconstruction [13] framework, and demonstrate how this
novel extension allows for high quality, free-space aware
MVS reconstructions.

We show that incorporating this occluding contour infor-
mation into an MVS method yields considerably cleaner,
more accurate, and more complete reconstructions, espe-
cially around object boundaries. Our focus is Internet im-
agery, which tends to be more challenging than lab-captured
datasets. The greatest improvements are in areas of very
fine-scale geometry, which tend to be lost using standard
regularization approaches due to over smoothing; contour
information is critical to retaining these structures. When
available, our approach can also incorporate standard sil-
houettes, and we show results on using external (sky-based)
and internal silhouettes together to achieve state-of-the-art
reconstructions of large landmarks.

2. Related Work
Multi-view stereo (MVS) and surface extraction tech-

niques are both broad and well-studied fields. We focus
here on existing work that is closely related to the technical
contributions of the paper.
MVS with occluding contours: Most state-of-the-art MVS
techniques rely solely on texture cues in a local image win-
dow, which is compared across multiple images. This rather
simple cue on local image windows works surprisingly well
and has been very successful, but still works poorly at depth
discontinuities, where a popular strategy is to just ignore
such image regions. There is a vast literature on dynami-
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Figure 1. Luxembourg Gardens in Paris. The top row shows the baseline reconstruction by PMVS [8] and Poisson Surface Reconstruction
software [13]. The middle row shows another baseline reconstruction by CMP-MVS software [12]. Our results are in the bottom row,
illustrating much clearner geometry boundary and more accurate details. PMVS+Poisson and our meshes are colorized from the closest
PMVS points. CMP-MVS mesh is colored by the reconstruction software.

cally adapting the local window shape to mitigate these ar-
tifacts [23], but these methods make decisions based on lo-
cal information, and their effectiveness is limited. Occlud-
ing contours, on the other hand, are useful 3D cues at such
image locations, which are complementary to local image
texture, and can be very effective if properly extracted.

Earlier attempts to use occluding contours in MVS for-
mulations have initialized the reconstruction with a visual
hull model from image silhouettes (i.e., external occluding
contours), which is then refined via a mesh evolution frame-
work that enforces both the photometric and silhouette con-
sistency [7, 10, 21]. The integration of both sources of in-
formation is formulated as a convex function minimization
problem with constraints in [16]. In all these approaches,
image silhouettes are either manually extracted or require
a controlled capture setup for easy extraction, which does
not easily scale to larger, unconstrained datasets. Several
prior approaches have automatically extracted object sil-
houettes that are consistent in multiple images. While the
main focus has been on segmentation rather than recon-
struction, methods such as [4] can produce impressive re-
constructions with thin structures by exploiting silhouette
information. All of the methods described above only han-
dle external occluding contours, which are essentially the
foreground/background segmentation of an image. Accord-
ingly, the reconstruction target is always an object, not eas-

ily extended to general scenes.

Recent work on combining stereo and segmentation goes
beyond object boundaries and uses over-segmentation algo-
rithms to better constrain the stereo problem [3, 15]. These
techniques work remarkably well for improving individual
depth maps, but do not formulate a full 3D visibility frame-
work and have been tested only on “organized” input im-
ages in a narrow baseline stereo setting. To our knowl-
edge, [9] is the only prior work that handled interior silhou-
ettes, by properly modelling visibility changes in a mesh
evolution framework. Results were only demonstrated on
synthetic examples with highly distinctive colors and on a
controlled laboratory example. This paper exploits not just
external occluding contours (silhouettes), but also internal
contours for fully automatic 3D reconstruction of compli-
cated scenes from Internet photo collections.

Volumetric data fusion: Almost all the state-of-the-art al-
gorithms formulate the 3D data fusion in a volumetric do-
main, by first discretizing the 3D space into finite number of
cells, then estimating a scalar function field, followed by an
isosurface extraction step. The function is typically defined
as a signed distance [5] or an indicator function [11, 12, 13]
separating the surface interior from the exterior. When the
input 3D data is dense and clean (e.g., laser range finders),
data fusion can be conducted as a per-voxel operation [5].
To handle input data with more noise and outliers, the data



fusion is formulated as an optimization problem to enforce
regularization over the domain, such as linear least squares
in Poisson Surface reconstruction [13] or a binary Markov
Random Field (MRF) [11, 12]. The use of free-space con-
straints plays an important role in handling outliers, and has
been extensively studied in the MRF formulation [11, 12].
In this work, we introduce the free-space constraints into the
continuous optimization framework of Poisson Surface re-
construction, which tends to achieve smooth interpolation.

3. Overview
Here we present a high level view of our proposed frame-

work. A detailed description appears in Section 4.
Starting from an internet photo collection for a given

site, we recover the camera positions with freely available
structure-from-motion software [18] followed by multi-
view stereo using PMVS [8]. PMVS is well-suited to re-
covering geometry from photo collections, but only gives
a semi-dense reconstruction, and can be very sparse in low
texture regions. In a typical reconstruction pipeline (Fig-
ure 2 (a)), these PMVS points are then used directly for sur-
face reconstruction. Instead, we modify the pipeline (Fig-
ure 2 (b)) to include construction of dense depth maps that
respect occluding contours and provide additional shape
and visibility information.

We construct an initial depth map for each input view,
starting with the PMVS points that are visible in that view.
Each initial depth map can be quite sparse, inadequate for
providing dense visbility information. To address this, we
interpolate the depth maps by optimizing for depths that are
smooth between PMVS samples, with an important modifi-
cation. Observing that depth discontinuities (occluding con-
tours) tend to coincide with image discontinuities, we re-
lax the smoothness near apparent image contours and edges
during optimization.

Next, we prepare a free space volume and an augmented
point set that will drive the surface reconstruction. We ob-
serve that the optimized depth maps are useful both for
visibility constraints and for adding new surface points.
Though not accurate everywhere, the depth maps tend to
be good proxies for space carving. Thus, we create a free
space volume directly from the depth maps. In addition, we
use the same depth-map visibility constraints to cull spu-
rious PMVS points, e.g., those that can often appear near
occluding contours.

In some interpolated areas, the depth maps can also pro-
vide reasonable approximations to the true geometry. The
intuition is that within regions that do not contain much
image detail, including constant albedo regions with little
shading variation, PMVS does not recover much, if any,
geometry, but that geometry is likely fairly smooth. Our
image-guided interpolation algorithm tends to propagate
depths well within such textureless regions. In the end, we
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Figure 2. System overview. Our contributions are highlighted in
the yellow rectangle. (a) A typical scene reconstruction system
pipeline. (b) Our system pipeline.

consider each depth map point as a candidate for surface
reconstruction, while retaining only the points that are con-
sistent with the all the depth maps. We combine the surviv-
ing depth map points with the PMVS points (that are not in
visibility conflict) to construct an augmented point set.

Finally, we solve for a surface that fits to the augmented
point set and performs fair hole-filling, while respecting the
free space volume. To achieve this, we employ screened
Poisson surface reconstruction [14] with a simple modifi-
cation: the addition of a soft, free-space volume constraint.
The resulting surface has smooth hole fills in under-sampled
areas but does not “baloon” out into free space in the way
standard Poisson reconstructions often do. In addition, the
free space volume provides, in effect, a tighter boundary
condition on the screened Poisson problem, which improves
the overall quality of the result.

4. Algorithms
4.1. Densifying depth maps

PMVS recovers oriented points and provides a list of
views used to reconstruct each point; we say a point is (con-
servatively) visible in these listed views. We can therefore
construct an initial, conservative depth map for each view
by projecting its visible PMVS points into a depth buffer
for that view. As shown in Figure 3(d), these depth maps
can be fairly sparse.

To estimate a dense depth map for a given view,
we define an energy function that encourages depths to
be (1) close to the PMVS points where available and
(2) smooth between PMVS points in a spatially adaptive
way, i.e., respecting image contours and color discontinu-
ities. Let (x, y) be a pixel location in an image, dx,y be the
unknown depth values, and Ω be a set of pixels with depth
values d̂x,y derived from projected PMVS points. Our en-
ergy definition is then:

Ed =
∑

x,y∈Ω

(dx,y − d̂x,y)2 + (1)

λ
∑
x,y

wx(x, y)

(
∂2dx,y
∂x2

)2

+ wy(x, y)

(
∂2dx,y
∂y2

)2
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Figure 3. Densifying depth maps. (a) Input color image. (b) gPb
contour response along horizonal direction. (c) gPb contour re-
sponse along vertical direction. (d) Initial depth map based on
visible PMVS points. (e) Our estimated dense depth map. (e) Our
estimated confidence map.

Figure 4. Two single view depth point clouds. The depth interpo-
lation does not create accurate background depth values, as there
are not enough samples. But it does create a depth-discontinuity
boundary that aligns well with images and recovers geometry
where PMVS points are dense.

where λ is a global smoothness weight and wx(x, y) and
wy(x, y) are spatially varying smoothness weight functions
along horizontal and vertical directions, respectively (de-
scribed below). We set λ to a relatively large value (50) in
our experiments to boost the regularization due to the fairly
noisy PMVS points that arise when reconstructing from in-
ternet photo collections.

Note that we choose to use second order derivatives in
order to encourage low curvature reconstructions. We ap-
proximate these derivatives as

∂2dx,y
∂x2

= 2dx,y − dx−1,y − dx+1,y,

∂2dx,y
∂y2

= 2dx,y − dx,y−1 − dx,y+1.

We construct the smoothness weighting functions
wx(x, y) and wy(x, y) to have values close to 1 in visu-
ally smooth regions, to encourage depth propagation, and
close to 0 on contours and color boundaries, to stop depth
propagation and encourage depth discontinuities at visual
boundaries.

To quantify visual smoothness and proximity to bound-
aries, we employ two measures. Recent work in computing
image contours has shown significant progress. We lever-
age the work of gPb [2], which computes oriented contour
strength at each pixel, measured in 8 directions. For our
purposes, we use just the horizontal and vertical contour
strengths, gx(x, y) and gy(x, y), which we show for one ex-
ample in Figure 3(b) and (c). The second measure we use is
simply the second derivative of image intensity in the x and
y directions. Putting these together, we define the smooth-
ness weighting functions to be:

wx(x, y) = exp

(
−
∥∥∥∥∂2I(x, y)‖

σ1∂x2

∥∥∥∥) exp(−gx(x, y)σ2

)
,

wy(x, y) = exp

(
−
∥∥∥∥∂2I(x, y)

σ1∂y2

∥∥∥∥) exp(−gy(x, y)σ2

)
,

where σ1 = σ2 = 0.1 in our implementation.
Minimizing Eq. 1 is a linear least squares problem for

which the global optimum is readily computed. Figure 3(e)
illustrates an example of dense depth map estimation.

In later steps, having a confidence measure for each
depth estimate is important. Depths near projected PMVS
points should have relatively high confidence, whereas
depths far from these points should have low confidence.
Applying nearly the same framework we used for depth es-
timation (Eq. 1), we estimate per-pixel confidence c(x, y)
by minimizing an objective:

Ec =
∑
x,y

(cx,y − ĉx,y)2 + (2)

λ
∑
x,y

wx(x, y)

(
∂cx,y
∂x

)2

+ wy(x, y)

(
∂cx,y
∂y

)2

In this case, we define the data ĉ(x, y) across all pix-
els: ĉ(x, y) = 1 at projected PMVS points, otherwise
ĉ(x, y) = 0. Here, the smoothness weights allow confi-
dences to “diffuse” without crossing color contours; thus,
for example, a high confidence foreground does not raise
the confidence of a low confidence background. Note that
the smoothness term now uses first order instead of second
order derivatives, since c(x, y) does not have a geometric
meaning that requires second order smoothness. We ap-
proximate these derivatives as:

∂cx,y
∂x

= cx+1,y − cx,y,
∂cx,y
∂y

= cx,y+1 − cx,y.

Again, we set λ = 50.



(a) (b)
Figure 5. Augmenting the PMVS point clouds. (a) The direct out-
put from PMVS. (b) Our augmented point cloud.

Figure 4 shows two depth maps visualized as 3D point
sets. Note how these point sets capture the occluding con-
tours of the foreground against the background as depth dis-
continuties. The point locations are accurate at regions with
good PMVS point coverage. They are less accurate at ar-
eas with very sparse coverage, for example, the wall in the
back. We use the confidence map (Figure 3(f)) to measure
this accuracy and later to limit the effect of bad depth values
on our final reconstructions.

4.2. Augmenting the PMVS point cloud

The reconstructed depth maps provide useful visibility
information, as well as new points that can potentially fill in
geometry in less textured regions that are not well-covered
by PMVS. In this section, we describe a method for enhanc-
ing the PMVS point set using the dense depth maps.

First, we consider each depth map point with confidence
greater than 0.2 to be a candidate for inclusion in the aug-
mented point set P , which is initially an empty set. Denote
the location of this point in world coordinates as q. We will
add q to P if q (1) is not in significant visibility conflict with
all the depth maps and (2) is near other depth map points
and thus likely on the surface.

Let πj : R3 → R2 be the function that projects a 3D
point into viewpoint j and let πd

j : R3 → R be a function
that computes the projected depth of that point. dj(x, y)
represents the depth stored in the j-th depth map at loca-
tion (x, y). We compute two confidence-weighted visibility
votes for each point q:

Kf (q) =
∑
j

c(πj(q)) · δ(πd
j (q) ≤ lbdj(πj(q)))

Ks(q) =
∑
j

c(πj(q)) · δ(lbdj(πj(q)) ≤ πd
j (q) ≤ ubdj(πj(q))),

where
δ(x) =

{
1, x = true
0, x = false

.

lb and ub are tolerance bounds to determine if a point lies
near the surface; we set lb = 0.99 and ub = 1.01. Kf (q)
then measures the degree to which q lies in the free space
of all of the depth maps. Ks(q) measures the amount of
support for q being with range of some set of depth map
points. We only add q to P if Kf (q) < γ and Ks(q) > γ,
where we set γ = 6 in our experiments.

We additionally add the original PMVS points to P , ex-
cept those points that are in significant visibility conflict
with the depth maps, i.e., for which Kf (q) < γ.

Figure 5 illustrates the greater coverage provided by the
augmented point set.

4.3. Computing free space volume
We additionally compute a free space volume that will

later constrain the surface reconstruction. First, we form a
finely sampled grid of voxels. Given a voxel u, we project
its center (which, with some abuse of notation, we will also
denote as u) into each view j to compute the accumulated
free-space vote for the voxel as:

K′f (u) =
∑
j

c(πj(u)) · δ(πd
j (u) ≤ l′bdj(πj(u))),

where l′b determines how close to the surface to carve. Here
we are more conservative and let l′b = 0.97, effectively as-
suming most high confidence values on the depth map are
within 3% error.

To prevent carving through well-supported regions of
space, we compute the number of augmented points in P
that lie within a voxel – call this number Kn(u) – and fi-
nally define the free space volume Vf as:

Vf = {u : (K′f (u) > γ′) ∩ (K′f (u) > 10 ·Kn(u))} (3)

In our experiments, we conservatively set γ′ = 15.

4.4. Occluding contours against the sky

Sky regions in images provide strong occluding contour
cues for bounding foreground structures. Suppose we have
fairly conservatively detected some (but not all) sky pixels
in a given view. We incorporate this information into our
framework by assigning very large depth values (108) to
those pixels, and then proceed with densifying the depth
map for that view as before. In later steps, depth map pixels
with very large depths are not considered as candidates for
inclusion in the augmented point set P – we are not actually
reconstructing the sky geometry – but they are used for free
space computations.

Our procedure for conservatively identifying sky pixels
is as follows. First we reconstruct a Poisson surface just
based on the original PMVS points. We then project this
surface into each view. Pixels are initially labeled sky if
they are not covered by this surface. Assuming sky pixels
tend to be blue or gray, we then narrow this set to pixels



with (r, g, b) colors that satisfy r+g ≤ 2b. Finally, we con-
servatively erode this set in each view with a disk of size 11.
Note that this procedure is only to initialize a conservative
sky seed. The accurate sky mask is computed through depth
densifying using interior contours.

4.5. Poisson reconstruction with free space
We modify the screened Poisson surface reconstruction

alrogithm [14] to handle free-space volumes. In particular,
we minimize the following objective:

E(χ) =

∫
‖∇χ(u)− V (u)‖2du+ (4)

α
A

|P|
∑
p∈P

c(p)χ2(p) + β

∫
u∈Vf

‖χ(u)− 1‖2du.

The first two terms give rise to the screened Poisson equa-
tion [14]. In the first term, u is a point in the volume, V is
the vector field constructed from the point normals, and χ
is an indicator function; χ(u) > 0 means that u lies outside
the surface, and χ(u) < 0 means u is in the interior of the
surface. In the second term, α trades off matching point nor-
mals and point locations over the point set P (of size |P|),
and A is an area term automatically computed in [14]. This
second term encourages values of χ to be zero near the input
points. The third term is our contribution: a soft constraint
that encourages the indicator function to take on values near
1 in free space. We build this modification into the released
source code of [14], version 4.0. Finally, solving for the χ
that minizes Eq. 4 results in an implicit function from which
the surface can be extracted as the zero level set.

In our experiments, we set α ∈ [0.5, 2] and β = 1.
We also supply normals for the vector field V . For PMVS
points, we use the original PMVS normals. For depth map
points, we compute the normals directly from the depth
maps in the standard way.

5. Experiments and Evaluations

We evaluate the proposed system on 6 datasets, consist-
ing of images collected from the Internet. The computa-
tional bottleneck is in the pre-processing, namely, image
contour calculation by gPb [2], SfM execution [22], and
PMVS execution [8]. These pre-processing steps may take
days for large datasets, in particular, nearly a week for our
largest dataset Colosseum, which started from more than
tens of thousands of images and ended up with an SfM
model consisting of 3276 images. Conversely, the new steps
we contribute – depth map densification, point set augmen-
tation, free space construction, and constrained Poisson re-
construction – finish within an hour for all the datasets on a
40-core cluster, not including file I/O time.

To evaluate the effectiveness of our approach, we have
made comparative evaluations. In Figures 1 and 6, our

reconstructions are compared against two other state-of-
the-art methods: 1) screened Poisson surface reconstruc-
tion [14] operating on the original PMVS point-cloud [8];
and 2) CMP-MVS [12], which improves reconstruction
near silhouettes and compares favorably to other state-
of-the-art techniques such as [21]. Also note that the
screened Poisson surface reconstruction software “halluci-
nates” large pieces of geometry in an attempt to produce
a water tight model. Such geometry consist of large trian-
gles; thus, we remove triangles whose edge length is longer
than 10 times the average edge length of the entire mesh
for Poisson reconstructions. The figures show that our re-
sults have much cleaner geometry boundaries showing the
effectiveness of the enhanced depthmaps and their carving
power along the occluding boundaries. Notice, in particular,
the precise outline of the winged dragon in our 3D model at
Place Saint-Michel (Figure 6) as well as sample depthmaps
produced by our system.

The top two rows of Figure 7 further illustrate improve-
ments over the standard PMVS+Poisson approach, with
tighter bounds on the geometry. We can also see the ef-
fect of various components of the system in the bottom row.
The bottom left sub-figure shows that augmenting the point
set does a better job of completing one of the wings, but
the reconstruction is still noisy and does not have a tight sil-
houette. Alternatively, as shown in the bottom-middle sub-
figure, not adding these points, but performing the carving
on the original PMVS points does tighten the silhouette, but
leaves Poisson to just smoothly fill in missing pieces. We
note that the reconstruction is much less noisy, due to the
free space volume providing tigher constraints on the Pois-
son reconstruction. Finally, the combination of augmenting
the point set and using the free space constraint gives the
best of both worlds as shown in the bottom-right sub-figure.

Figure 8 provides another example where, in particular,
PMVS creates a noisy point set and leads to poor surface
reconstruction using the standard Poisson approach. Our
method significantly improves the mesh quality.

Finally, we highlight the results of incorporating the oc-
cluding contours against the sky in depth map densification
and free-space volume construction, as shown in Figure 9.
The top row (San Marco Basilica) shows how PMVS and
Poisson tend to inflate the boundary into sky regions. After
carving out sky regions in the free space volume using the
improved depth maps, we are much better able to resolve
the outlines of statues and even the fine cross structure atop
the dome. In the middle and bottom rows (Colloseum), we
can see how sky carving has both removed spurious geome-
try along the top of the Colloseum and also enabled carving
through some of the portals around the structure.
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Figure 6. Reconstruction of Place Saint-Michel (583 images after SfM).

6. Conclusion

This paper presents two contributions to the problem
of MVS from photo collections: 1) a new technique to
identify free-space regions arising from occluding contours,
and 2) a new approach for incorporating the resulting free-
space constraints into surface reconstruction. We propose
a new dense depth map interpolation from 3D point clouds
and occlusion boundaries, and a Poisson formulation that
incorporates free space constraints. The free space con-
straints effectively modify the space of solutions with a
tigther bound around the initial point cloud. This new for-
mulation retains the regularization/hole filling properties of
Poisson [14] while improving its accuracy with noisy data.
It outperforms state-of-the art MVS techniques on Internet
photo collections, and results show dramatic quality im-
provements.

The method we have described does have limitations.
First, it depends on time-consuming pre-processing steps,
though these can be difficult to avoid (e.g., SfM and
PMVS). Faster implementations of gPb are now available,
which should accelerate this part of the process. Second,
errors in depth map interpolation have the potential to do
too much carving. Third, occluding contours can give bet-
ter bounds on parts of a scene, but screened Poisson surface
reconstruction is still left to fill in parts that were not ob-
served, e.g., the backs of objects. In some cases, the filled-in
regions behave unexpectedly, such as the wings of Winged
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Figure 7. Reconstruction of Winged Victory of Samothrace at Lou-
vre (274 images after SfM).

Victory, which are merged across the top, rather than being
filled around the back. Finally, 3D volumetric contouring
artifacts are visible in some reconstructions, likely due to



PMVS + Poisson Proposed approach
Figure 8. Reconstruction of Laocoon and his Sons at Vatican Mu-
seums (303 images after SfM).

[17] Proposed approach
Figure 9. Our reconstructions for San Marco Square (top) and Col-
loseum (middle and bottom) datasets showing the improved geom-
etry boundaries over [17]. The numbers of images after SfM are
2687 and 3276, respectively.

the influence of the binary free space volume on the Pois-
son reconstruction. We believe the results could further be
improved with a soft voting scheme or perhaps signed dis-
tances from depth maps.
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