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Abstract. We address the problem of extending the field of view of a photo—
an operation we call uncrop. Given a reference photograph to be uncropped, our
approach selects, reprojects, and composites a subset of Internet imagery taken
near the reference into a larger image around the reference using the underlying
scene geometry. The proposed Markov Random Field based approach is capable
of handling large Internet photo collections with arbitrary viewpoints, dramatic
appearance variation, and complicated scene layout. We show results that are
visually compelling on a wide range of real-world landmarks.
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1 Introduction

Travel photos often fail to create the experience of re-visiting the scene, as most con-
sumer cameras have limited field of view (FOV). Indeed, mobile phone cameras (which
far outnumber any other photography device) typically have a FOV around 50-65 de-
grees, significantly narrower than the human eye [4]. Capturing large scenes is therefore
tricky. Modern cell phones are equipped with camera apps providing a panorama mode,
which allows you to take multiple pictures and stitch them into a bigger image. How-
ever, the process is often tedious. Furthermore, you cannot operate on your past photos.
As a result, your photos are often more tightly cropped than desired (See Fig. 1).

We address the problem of extending the FOV of a photo—an operation we call
uncrop. The goal is to produce a larger FOV image of the scene captured in your photo,
leveraging other photos of the same scene from the Internet (captured at different times
by other people). We make an important distinction between producing a plausible
extended image using a technique such as texture synthesis [19], vs. producing an ex-
tended rendering of the true scene which is intended to be accurate. The latter case is
more challenging and potentially more useful, as it gives you information about the real
world, allowing you to zoom out of any photo to get better spatial context.

For almost any photo you take at a tourist site, there exist many other photos from
nearby viewpoints, collectively capturing the scene across a potentially large FOV. Our
approach is to automatically select, reproject, and composite a subset of this imagery
into a large image screen centered on your photo. This problem is challenging for sev-
eral reasons. First, the photos are not captured from the same optical center, resulting in
too much parallax for existing state-of-the-art panorama stitchers (which produce severe
artifacts as we will show). Second, the appearance (color, exposure, and illumination)
varies dramatically between photos, making it difficult to produce a coherent compos-
ite. And finally, the presence of people, cars, trees, windows, and other transitory or
hard-to-match objects make the alignment problem especially challenging.
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A typical travel photo
of a family

Our photo uncrop resultInternet Photos

Fig. 1. Capturing family photos with the desired background in the image frame can be tricky.
Our approach expands the FOV of a user photo thus enables better spatial context. Landmark:
Stravinsky Fountain in Paris.

This problem represents a compelling application that sits between traditional panorama
stitching, which requires capturing many images and is thus labor intensive, and full 3D
scene reconstruction, which has too many failure modes. Indeed, our experiments with
state-of-the-art 3D reconstruction techniques [9, 14, 22] rarely produce hole-free geom-
etry, omitting ground, people, trees, windows, and many other salient scene aspects. Our
approach therefore assumes incomplete geometry in the form of depth maps, and lever-
ages a novel Markov Random Field (MRF) based compositing technique to generate
compelling full-scene composites complete with people, trees, etc. The method auto-
matically generates results for multiple FOV expansions; the user can then choose the
desired FOV and crop as desired to discard image boundaries with significant artifacts.

Our contributions are two-fold: (i) the first system to produce compelling uncrop-
ping results with dramatic boundary expansion from Internet photos; (ii) a novel MRF-
based formulation adapted to handle significant geometry errors.

We show convincing results on a wide range scenes, each covered by 100s to 1000s
of Internet images. Like existing panorama stitchers, our results are not entirely free
of artifacts, and stitching seams and misregistration artifacts are occasionally noticable.
However, we argue that for the intended application (giving you spatial context for your
photo), small artifacts are quite tolerable. I.e., it’s less important that every pixel is right
than being able to zoom out and see that the building behind you is the Uffizi, or that
you’re standing in the middle of a large town square.

2 Related Work

Many texture synthesis techniques support image interpolation and extrapolation [19,
28, 13, 5]; perhaps most related are those that leverage Internet imagery [24, 11, 15].
While these methods can produce extremely realistic results, they generally depict ex-
trapolated scenes that don’t actually exist; none of the extrapolation approaches attempt
to capture the appearance of the real underlying scene.

There is a rich literature in panorama generation from multiple images sharing the
same center of projection [23] with widespread popular deployment on smart phones [17].
There also exist large scale panorama creation projects, generating giga-pixel [16], and
more recently tera-pixel [7] images.

When input images do not share the same center of projection, the alignment prob-
lem becomes significantly more difficult, as parallax, which depends on scene depth,
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must be taken into account. When parallax is small or for near-planar scenes, simple
2D image transformations such as homographies are often enough to align and blend
images without artifacts [2, 18, 10].

In more general configurations, proper estimation of scene depths is essential for
producing artifact-free images. Panorama stitching with scene depth estimation has
been demonstrated for certain specialized camera motion cases including circles [23,
26, 21] and linear motion [20]. The addition of depth information enables new applica-
tions in these systems, such as the generation of depth of focus effects and 3D stereo
images [21]. However, these techniques require continuous and often restricted camera
paths and do not operate on community photo collections (e.g., Flickr) or other un-
structured imagery. In this work, our goal is to extend the FOV of an input photograph
by harnessing online community photo collections, via careful geometric analysis and
blending techniques.

Most recently, and most similar to our own work, Zhang et al. [27] propose to ex-
pand the boundary of a personal photo (among other applications) using online collec-
tions. However, their method requires all images to overlap with the reference, limiting
the effective expansion range. Further, they adopt a relatively simple, median-based av-
eraging process for blending, which produces heavily blurred/ghosted composites on
our examples.

An alternative approach would be to fully model geometry and reflectance of the
scene, enabling (in principle) photorealistic scene rendering from any desired view-
point. Despite exciting recent progress, however, state-of-the-art techniques rarely pro-
duce complete, high resolution reconstructions, and fail to model trees, people, win-
dows, thin objects, and other very salient scene elements [22].

3 Input Data

We download images from Flickr (http://www.flickr.com) for a variety of sites, and use
existing structure from motion (SfM) software [25] to compute camera poses. Uncrop-
ping is performed on images selected from the SfM model to show the capability of
our system, though it would be straightforward to apply our system to an arbitrary new
photograph by simply adding it to the relevant image set and performing incremen-
tal SfM. Publicly available multi-view stereo software is used to reconstruct per-view
depthmaps [8]. Then, we warp each image by reprojecting its depth map and colors to
the viewpoint of the image to be uncropped. More details on these preprocessing steps
are found in Section 5.

4 Uncrop Algorithm

We propose an MRF-based compositing algorithm to construct a wide FOV target im-
age around a reference image. We assign a label l to each source image, such that
l ∈ {−1, 0, 1, · · · , N − 1}, where N is the number of images that survived the view
selection process (including the reference image itself), and −1 is the null label. After
re-projecting each source image, we have a set of partial, warped images Cl(p) that
each cover parts of the target image. We seek to solve for the label map l(p) over target



4 Qi Shan, Brian Curless, Yasutaka Furukawa, Carlos Hernandez, and Steven M. Seitz

pixels p that will yield a high quality composite when copying warped image colors
to the target image. We include the null label l = −1 to allow for a small number of
pixels not covered by any of the images. After computing the composite, we perform a
Poisson blend to give the final result.

We formulate the MRF problem as the sum of a unary term, a binary term, and a
label cost term:

E(l) =
∑
p

Eunary(p, l(p)) +
∑

{p,q}∈N (p,q)

Ebinary(p, l(p), q, l(q)) + Elabel(l). (1)

whereN (p, q) denotes pairs of neighboring pixels in a standard 4-connected neighbor-
hood. With abuse of notation, l here denotes the set of all the labels in the image. What
is novel is the actual formulation of the unary and binary terms. We first describe their
principles, where detailed formulation will be discussed in the following sections.

4.1 Principles

Eunary: It is nearly impossible to reconstruct perfect geometry for a complicated scene
like ours, and a warped image may not be exactly aligned with the reference image.
Therefore, the unary term incorporates the confidence of estimated depth information.
Appearance mismatch is another source of artifacts. For example, compositing a day-
time photo with a nighttime shot is challenging. We assign each image a score that
measures the appearance similarity to the reference. Furthermore, appearance variation
within an image due to shadows, over-saturation, and flash photography can result in
spatially varying pixel quality. Thus, we assign lower cost to high contrast pixels.

Ebinary: Traditional image stitching uses Ebinary to minimize seams by looking for cuts
on image edges. We follow a similar path, but also introduce a new measure to encour-
age any given reconstructed patch in the composite to resemble at least one warped
source image at the same location. This helps to avoid making abrupt transitions in the
composite that can arise from geometric misalignments, because noticeable artifacts at
such transitions do not resemble corresponding regions in any of the input images.

Elabel: Building a composite out of many images can lead to a quiltwork of stitched
patches that can stray from the desired result. It is natural instead to encourage the
stitcher to take pixel examples from a sparse set of warped views. In our approach, we
achieve this by assigning a constant cost to each unique label used in the compositing.

4.2 Unary term

We construct the unary term from several components:

Eunary(p, l) = Egeometry(p, l)+α1Eappearance(l)+α2Econtrast(p, l)+α3Ereference(p, l), (2)

where α1 = 10, α2 = 5, α3 = 1 are used in all of our experiments. Note that each
warped source image Cl(p) only partially covers the target image; if warped image l
does not have a color at pixel p, the unary term is automatically set to infinity.



Photo Uncrop 5

Geometry: We define the geometry term Egeometry(p, l) as the possible error in the
position of a reprojected pixel. It is determined by two factors: the accuracy of the
original depth value and the baseline between the reference view and the source view.
First, we model the accuracy using the range of depths in a local neighborhood in the
source image l. More concretely, let u denote a source pixel in image l, and U to be the
corresponding 3D point on the depthmap, which is re-projected to p in the reference.
We look at a local neighborhood of size 11 × 11 pixels centered at u, and compute
the minimum and the maximum depth values in the window. We have assumed a 1%
depth error, and subtracts from the minimum and add to the maximum depth values by
0.01Du, where Du is the depth value at u. We take the 3D point U and shift its location
to the minimum and the maximum depth locations, and project it to the reference image.
Let us call the two projected location pnear(p, l) and pfar(p, l), respectively. Then, the
geometry term is defined as follows:

Egeometry(p, l) = max(|p− pnear(p, l)|, |p− pfar(p, l)|). (3)

By minimizing this term, the optimization will favor pixels from images that have a
smaller baseline relative to the reference view (less room for parallax errors) and images
that sample surface regions more densely in close-ups and thus are more likely to cover
a smaller range of depths. It is possible that multiple pixels u may warp to pixel p (see
Section 5), in which case, we simply take the average projected location.

Appearance: Internet photos exhibit a wide range of illumination conditions. It is im-
portant to encourage the use of images with similar appearance. To do this, we assign an
appearance cost to each source image. Specifically, we take the color histogram of each
image, and score it by its KL divergence from the histogram of the reference image.
Then the images are sorted in ascending order. Let kl be the index of image l in this
sorted list. We now define the overall image appearance cost as:

Eappearance(l) = kl/N, (4)

where N is the number of images in the set. Smaller cost in this case means less diver-
gent from (more similar to) the reference image. Note that this unary term is constant
for image l, regardless of which target pixel is being considered.

Contrast: Undesirable appearance variations such as shadows and over-saturation can
be penalized based on the contrast. We address this by defining a local contrast cost. Let
(Glx, G

l
y) be the finite difference gradient of image l after mapping image l to grayscale

(intensity values ∈ [0, 1]). We use the following formula to measure the lack of contrast
over 11 × 11 window Ω centered at u in image l, which corresponds to p after the
warping:

Econtrast(p, l) =
1

|Ω|
∑
v∈Ω

√
(1− |Glx(v)|)2 + (1− |Gly(v)|)2. (5)

If multiple pixels from source image l map to p after warping, we again simply take the
average of their scores.

Reference: Finally, it is important to respect the reference image. Let us define the core
region of the image Ωcore to be a set of pixels inside the reference image and more than



6 Qi Shan, Brian Curless, Yasutaka Furukawa, Carlos Hernandez, and Steven M. Seitz

11 pixels in distance from its boundary. The reference cost is defined by applying the
following four rules from top to bottom:

Ereference(p, l) =


0, l = lref
10000, l = −1
100, p /∈ Ωcore

∞, p ∈ Ωcore

(6)

where lref is the label of the reference image. It is possible that some of the pixels in
the target image are not covered by any of the images, thus we allow the l = −1 label,
with high cost.

4.3 Binary term

Similar to previous work [3], we encourage label switches in regions with edges, where
seams will be less noticeable. Further, we use a novel compatibility term to encourage
constructing regions in the target image that resemble warped source image regions.
Our binary term can then be written:

Ebinary = Eedge + βEcompatibility. (7)

where β trades off the relative contribution of the compatibility term. (We set β = 10
in all of our experiments.)

Edge: We first define a Sobel filter cost for a single pixel u and in (unwarped) source
image l:

ES(u, l) =

(
6− ||S(u, l)||1

4

)2

. (8)

S(u, l) is the concatenation of the Sobel filter responses in the x and y directions for
each of the r, g, and b color channels, where we take the L1 norm of this 6-dimensional
vector. Now, for neighboring target pixels p and q with labels l and m, respectively, the
binary edge cost is:

Eedge(p, l, q,m) =

{
0, l = m

ES(u, l) + ES(u,m), l 6= m.
(9)

If multiple pixels correspond to p after warping, we take their average over u.

Compatibility: To encourage regions in the target image to resemble regions in the
source image, we introduce a novel label compatibility term. Consider a pixel p and
one of its neighbors q in the target image, and an image l. We define an 11×11 window
around the two pixels and collect the pixels of Cl(p) (corresponding to the warped
version of image l) in the overlap into a vector Wp,q(l). If there will be a transition
between labels l and m in going from p to q, respectively, then the resulting window in
the final result will likely resemble the average of the windows Wp,q(l) and Wp,q(m).
This average in turn should resemble at least one of the (warped) source images. Thus,
we define the following compatibility cost:

Ecompatibility(p, l, q,m) = 1−max
n

NCC

[
1

2
(Wp,q(l) +Wp,q(m)) ,Wp,q(n)

]
(10)



Photo Uncrop 7

where NCC[·, ·] ∈ [−1, 1] is the normalized cross-correlation between two vectors,
and n ranges over all of the labels. Note that, by this definition, this term becomes 0
when l = m. In addition, we set the term to∞ if either Wp,q(l) or Wp,q(m) includes
pixels where Cl(p) or Cm(p) are undefined.

4.4 Label cost

We encourage the image stitcher to take color from a small number of images by as-
signing a constant cost for each additional label. If K is the number of unique labels in
the composite, we set Elabel(l) = 500000 ·K.

4.5 Optimizations and Accelerations

The energy definition in Eq. (1) falls naturally in the category of multi-label optimiza-
tion with label cost. We optimize it with an iterative alpha-expansion solver [6].

Directly solving the problem is impractical due to the image resolution (millions
of pixels) and the large label space (thousands of labels). Therefore, we apply (i) a
simple up-sampling scheme and (2) a pre-filtering process to limit the solution space.
The computational time varies from 10 seconds to a few minutes for solving the graph
cut problem with a single thread on a 3.4Hz CPU.

Up-sampling a lower resolution label map: The iterative alpha-expansion solver is
performed on a target image that is 1/8 the resolution (in each dimension) of the desired
result. After optimization, the label values are upsampled as follows. Each pixel in
the original high resolution target image has four possible label candidates at the 4
nearest pixels in the low-resolution label image. We simply pick the label with the
lowest appearance penalty (Eq. 4).

Pre-filtering: First, we reduce the label set by discarding input images that are far
from the COP of the reference view or cover only a small portion of the target image
(see Section 5 for more details of this process). Next, we observe that the optimization
process tends to reject pixels that (i) have large geometry cost, (ii) have poor patch
compatibilities, or (iii) are too dark or over-saturated (essentially, pixels in solid black
or white regions). Removing some obviously low quality pixels before performing the
optimization limits the solution space and can thus greatly improve the computational
efficiency. Specifically, we remove a label l at pixel p from the solution space, that is,
assigning infinity cost, when (i) Egeometry(p, l) > 20, Ecompatibility(p, l, p, l) > 0.6, or
Econtrast(p, l) >

√
2− 0.01.

4.6 Poisson image blending

The final, blended composite is computed from the MRF composite by solving a Pois-
son equation (Fig 2). We first compute the x, y gradient from the MRF composite, and
set the values to be 0 at places where the label changes or where the label is −1. The
blended composite should keep the color from the reference images; thus, we set a large
weight (1000) to penalize differences from the reference image colors at the locations
where reference pixels are available.
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Input image

Label map

MRF composite (without Poisson blending) Final blend composite

Fig. 2. Landmark: Pantheon in Rome. Typically 10-20 unique labels are present in the label map
after the graph-cut optimization. It is used to create an MRF composite.

5 Implementation Details

Depth map reconstruction: We use publicly available multi-view stereo software [8]
to reconstruct per-view depth maps, then apply cross bilateral filtering [12] for smooth-
ing, as noise and high frequency geometric details often cause artifacts during image
warping. The local window radius is 50 and the regularization parameter is 0.16 (sug-
gested by the code of [12]). Note that we use the corresponding color image as the
reference for the bilateral filtering. This process also helps in filling in missing depth
values, where kernel weights are simply set to 0 for holes in an initial depth map. Fi-
nally, we compute a normal per pixel based on the depths.
Image Selection and Warping: Given a reference photograph and the SfM recon-
struction, we first remove each source image with an optical center that is more than a
distance τCOP from the reference; we set τCOP = 501 in our experiments.

Next, we forward-warp the remaining source images into the target image using
splatting and a soft Z-buffer algorithm. We project each source image pixel into the
target view, eliminating source pixels that are backfacing to the target view. In general,
re-projected source pixels land between target pixels; furthermore, due to occlusions,
foreshortening, and differences in image resolution, it is possible for multiple source
pixels to land between the same set of target pixels. We associate each source pixel
with the four nearest target pixels, storing at each target pixel p a sample {u, l, C,w, d}
comprised of the position u, image identifier l, color C, bilinear weight w, and re-
projected depth d of the source pixel. We project all source images in this manner,
storing a list of samples at each pixel. We then eliminate all samples that are behind the
reference viewer (d < 0) or occluded by other samples based on a soft Z-buffer; i.e.,
for each target pixel p, we find the closest positive depth dclosest and consider a given
sample with depth d at p to be occluded if d > dclosest + τdepth. (We set τdepth = 20
in our experiments.) For each target pixel p, we then collect all the samples from the
same image l, compute a weighted average color Cl(p) and a source pixel list Ul(p),
which will be used in computing label costs in the MRF formulation. Note that Cl(p)

1 The length of 1 unit in our 3D models is the distance between the first pair of images selected
by VisualSfM. The pair is selected to have a large number of features in common while having
a sufficiently large triangulation angle (greater than 4 degrees between their optical axes).
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(a) (b) (c) (d)

Fig. 3. Ground truth experiment (San Peter Cathedral). (a) The ground truth image. (b) We only
keep 1/9 of the image in the center, which is the input to our system. (c) Uncropped to the
ground truth image size. The ground truth image in (a) was not used in creating this composite.
(d) Uncropped to even wider FOV than the original.

only covers part of the target image and is “invalid” elsewhere; further, it is possible
for source samples to land apart from each other due to grazing angle surfaces or if the
source image is low resolution, leaving gaps between the projected samples.

Finally, we perform one last image selection step: for each image l, if the valid
portion of Cl(p) which lies outside of the reference image region covers less than 5%
of the target image, then image l is eliminated from further consideration. This step
tends to remove images that are: not looking in the direction of the scene of interest, are
much lower resolution than the target image, or are close-ups of only a small portion of
the scene of interest.

6 Results and Evaluations

We evaluated our system on 10 datasets from the city of Rome and Paris. The number
of images in each dataset (i.e., SfM model) ranges from 262 (Stravinsky Fountain) to
2397 (Piazza Navona), where the largest two datasets contain more than 2000 images.
We do not have enough space to show results on all the datasets, and refer the reader
to the supplementary material2 for more comprehensive results and evaluations. For
each example, we generated results for several target image sizes and kept the largest
image that looked plausible after manually cropping to discard image boundaries with
significant artifacts. Automatically selecting the target image sizes and cropping is an
area for future work.

6.1 Ground truth experiment

Figure 3 illustartes an experiment which allows us to compare our result against the
ground truth. We take a relatively wide FOV image (one from San Peter Cathedral

2 Please visit the project webpage at http://grail.cs.washington.edu/projects/sq photo uncrop/
for more information.
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(a)  E              = 0geometry (b) E                   = 0compatibility (c) With both terms effective
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Fig. 4. Evaluating the effectiveness of Egeometry and Ebinary compatibility (San Peter Cathedral). We
show close-up views of the image mosaic and the Poisson blended results for better visualization.
(a) Egeometry is turned off. (b) Ebinary compatibility is turned off. (c) Both terms are turned on.

dataset), crop to 1/9 of the image in the center, then run our system to uncrop. Note
that the ground truth image is not used for stitching. Despite minor intensity differences,
our result faithfully reconstructs the original image using other photographs. In fact, our
result has better contrast and reveals more details, in particular, in the bottom half of
the image. To take this one step further, we can expand the FOV even more than the
original image and generate a convincing composite with much wider field of view
than the input.

6.2 Evaluation of the geometry and compatibility terms

Here we evaluate the effectiveness of two novel components of our MRF formulation:
Egeometry andEcompatibility. TheEgeometry term prefers source pixels from smaller baseline
views with more accurate depth estimates. These views typically produce fewer distor-
tions. Fig. 4(a) shows the MRF composite and its Poisson blend when Egeometry is set
to 0. The optimizer picks a patch with large geometry distortion, causing misalignment
artifacts. On the other hand, Ecompatibility is designed to discourage switching labels to
a misaligned image. We show the result of setting Ecompatibility = 0 in Fig. 4(b). Severe
misalignment is visible at the boundaries between image patches in the MRF compos-
ite. By incorporating both terms (Fig. 4(c)), the optimizer creates a better composite
with fewer visible artifacts.

6.3 Comparitive evaluation against baseline methods

To the best of our knowledge, there does not exist a system that can achieve unlim-
ited FOV expansions on the same uncropping problem by chaining together overlap-
ping community photos. The closest ones are the Photoshop CS6 PhotoMerge tool [1],
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Photoshop CS6 PhotoMerge with manual color blending

User input

A subset of Internet photos from the 
same scene

Our partial implementation of [Zhang et al. 2014]

[Nomura et al. 2007]

Our photo uncrop result

Fig. 5. Institut de France in Paris. We don’t show the color blend result of [Nomura et al. 2007]
since it is not straight forward from the output of their released executable.

Scene Collage [18] (with executables released), and the boundary expansion method
in [27]. Here we treat the first two as baseline methods. Neither of them is capable of
handling the large amount of images in our datasets (processes crash with our 64-bit
Windows machine with 48 GB memory). To favor the baseline methods, we provide
them with the set of images, which pass the pre-filtering process described in Sec. 5,
where the number of remaining images is typically around 100. The source code for the
third method [27] (which assumes that all images overlap the input) was not available
and was not straightforward to reproduce: it involves many steps including depth-based
warping in some areas, homography warping in others, texture synthesis in other parts,
and seam carving for still other parts, and the description of the method is fairly brief
and high-level. Instead, we used own warping method, which allows wider FOV expan-
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User Input Our photo uncrop result

[Nomura et al. 2007]

Photoshop CS6 PhotoMerge with manual color blending

A subset of Internet photos from
the same scene

Close-up viewsOur partial implementation of [Zhang et al. 2014]

User Input Our photo uncrop result

Photoshop CS6 PhotoMerge with manual color blending

A subset of Internet photos from 
the same scene Close-up viewsOur partial implementation of [Zhang et al. 2014]

[Nomura et al. 2007]

Fig. 6. Two datasets from Piazza del Popolo. Notice the geometry misalignment in results from
PhotoMerge and [Nomura et al. 2007], as well as the blurred composites from [Zhang et al. 2014].
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Photo uncrop resultsUser input
Fig. 7. More results.
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sion, and just applied the median-based blending step described in [27] to evaluate the
compositing part of their pipeline.

A common problem of the baseline methods is the inability to handle non-planar
geometry and reason about visibility, as shown in Fig. 5. Both PhotoMerge and Scene
Collage copy pixels from a bridge that is behind the camera. The baseline methods
usually prefer wider FOV source images, thus tend to use images containing occluders,
the bridge and the bus in this case, in the composite.

The presence of large parallax is also a challenge for the baseline methods. Most
2D image transformations used for image stitching, such as a planar homography, are
not sufficient to correctly warp images, unless the underlying geometry is near planar.
This problem is well illustrated at the top portion of Institut de France in Fig. 5. Results
in Fig. 6 show similar misalignment artifacts with the baseline methods, where our
composites are significantly better.

Finally, for our examples, the simple median-based blending approach used in [27]
produced heavily blurred/ghosted composites (Fig. 5, 6).

More experimental results are provided in Fig. 7, which clearly illustrates that the
uncropped images with extended FOV provides better spatial context of the scenes.

7 Conclusion

This paper presents the first work on utilizing Internet imagery to dramatically extend
the field of view of a user photo. We employ multi-view stereo to warp images into a tar-
get, wide FOV image and propose a novel MRF-based formulation designed to handle
inevitable geometric inaccuracies. It creates results with image content that resembles
the real scene. The evaluations on a wide range of real world datasets demonstrate the
effectiveness of our approach. The results, while not perfect, are convincing and provide
real spatial and visual context not available in the original user photo.

Our approach does have limitations. First, it only works for photos taken at sites
where a sufficient number of Internet photos are available (e.g., tourist sites with 100s
to 1000s of images in our examples) and would fail to reconstruct regions where there
is no coverage. The ground is often a problem area, as people seldom photograph the
ground (examples in Fig. 7). As with most panorama stitchers, transient objects in the
source images – e.g., people and cars – can be problematic, and seams through them
may occur. Recognition and segmentation algorithms could help address this problem.
If the user photo itself contains transient objects that are not entirely in frame, then they
will remain clipped in the final composite if the new field of view extends beyond them;
automatically and realistically extending such objects (people, cars, etc.) out of frame
would be interesting if quite challenging.
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