Fourier Analysis of the 2D Screened Poisson Equation for Gradient Domain Problems

Pravin Bhat¹ Brian Curless¹ Michael Cohen^{1,2} C. Lawrence Zitnick²

¹University of Washington ²Microsoft Research

Abstract

We analyze the problem of reconstructing a 2D function that approximates a set of desired gradients and a data term. The combined data and gradient terms enable operations like modifying the gradients of an image while staying close to the original image. Starting with a variational formulation, we arrive at the "screened Poisson equation" known in physics. Analysis of this equation in the Fourier domain leads to a direct, exact, and efficient solution to the problem. Results using a DCT-based screened Poisson solver are demonstrated on several applications including painterly rendering, image re-lighting, image sharpening, and de-blocking of compressed images.

Gradient Domain Problem	Fourier Domain Solutions			
Inputs	Poisson solution (previous work)			

 $\arg_{f} \min \iint || \nabla f - \mathbf{g} ||^2 dx dy$

 $\nabla^2 \mathbf{f} = \nabla \cdot \mathbf{g}$

 $F = \frac{-i2\pi s_x G^x - i2\pi s_y G^y}{4\pi^2 (s_x^2 + s_y^2)}$

Poisson equation

Fourier domain solution

Result - f

Screened Poisson solution

 $\arg\min_{f} \iint \lambda_{d}(f-d)^{2} + ||\nabla f - \mathbf{g}||^{2} dx dy$

Solution - f

Applications

 $\lambda_d f - \nabla^2 f = \lambda_d d - \nabla \cdot \boldsymbol{g}$

Screened Poisson equation

 $F = \frac{\lambda_d D - i2\pi s_x G^x - i2\pi s_y G^y}{\lambda_d + 4\pi^2 (s_x^2 + s_y^2)}$

Fourier domain solution

Result - f

Summary of Results (ask for a guided tour)

	General filtering through Screened Poisson equation	Sharpen filter through gradient amplification	Sharpen filter through Laplacian subtraction
Variational form	$\iint \lambda_d (f - d)^2 + \nabla f - \mathbf{g} ^2 dx dy$	$\iint \lambda_d (f - u)^2 + \nabla f - c_s \nabla u ^2 dx dy$	$\iint (f - u)^2 - 2\lambda_s \nabla f \cdot \nabla u dx dy$
Euler-Lagrange form	$\lambda_d f - \nabla^2 f = \lambda_d d - \nabla \cdot \mathbf{g}$	$\lambda_{d}f - \nabla^{2}f = \lambda_{d}u - c_{s}\nabla^{2}u$	$f = u - \lambda_s \nabla^2 u$
Fourier solution	$F = \frac{\lambda_d D - i2\pi s_x G^x - i2\pi s_y G^y}{\lambda_d + 4\pi^2 (s_x^2 + s_y^2)}$	$F = \frac{1 + 4\pi^2 (c_s/\lambda_d) (s_x^2 + s_y^2)}{1 + 4\pi^2 (1/\lambda_d) (s_x^2 + s_y^2)} U$	$F = [1 + 4\pi^2 \lambda_s (s_x^2 + s_y^2)] U$
Spatial filter solution	$f(x,y) = \frac{1}{2\pi} K_0 (2\pi \sqrt{\lambda_d} (x^2 + y^2)) * (\lambda_d d - g_x^x - g_y^y)$	$f(x,y) = c_s u + \frac{\lambda_d(1-c_s)}{2\pi} K_0(2\pi \sqrt{\lambda_d(x^2+y^2)}) * u$	$f = u - \lambda_s \nabla^2 u$

sharpen filters

Screened Poisson: spatial filter solution

The screened Poisson equation can be solved via linear filtering: (1) scale the data image, (2) subtract the divergence of the supplied (generally non-integrable) gradient field, then (3) blur the result.

The blur function, shown below, is the zeroth order modified Bessel function of the second kind, $K_0(r)$. It is rotationally symmetric, and, while infinite at r = 0, is integrable.

Sharpen filter comparison: frequency domain

Here we plot sample frequency domain spectra for Laplacian subtraction and gradient amplification. For this illustration, we set the parameters as follows: $\lambda_s = 1$, $\lambda_d = 4$, and $c_s = 20$.

Performance evaluation on panoramic stitching

A comparison of memory and run-time performance of our method and other state-of-the-art methods for panoramic stitching (gradients only):

	Size		Time (s)				Memory (MB)		
Dataset	(MP)	FS QT	SM	HB	LHAB	FS QT	SM	HB	LHAB
St. Emilion	10	31 9	NA	3639	160	40 24	NA	362	1044
Beynac	12	22 8	17	3357	177	48 16	190	435	1252
Rainier	23	79 14	33	6446	268	$92 \ 27$	110	620	1790
Sedona	36	85 29	NA	NA	NA	$144\ 52$	NA	NA	NA
Edinburgh	51	$187\ 122$	79	NA	NA	204 123	203	NA	NA
Crag	68	172 78	NA	NA	NA	$272 \ 96$	NA	NA	NA
RedRock	88	$270\ 118$	118	NA	NA	352 112	133	NA	NA

* FS (our Fourier based solution using FFTW's DCT implementation) * QT (Quadtree Compositing by *Agarwala et al. in SIGGRAPH 2007*) Sharpen filter comparison: variational form

Laplacian subtraction - sharpen filter

 $\underset{f}{\text{arg min } \iint (f-u)^2 - 2\lambda_s \nabla f \cdot \nabla u \, dx \, dy}$

Gradient amplification - sharpen filter

arg min
$$\iint \lambda_d (f - u)^2 + || \nabla f - c_s \nabla u ||^2 dx dy$$

f
 $\lambda_s = (c_s / \lambda_d)$

