
Resynthesizing Facial Animation through 3D Model-Based Tracking

Frédéric Pighiny Richard Szeliski z David H. Salesinyz

yUniversity of Washington
zMicrosoft Research

Abstract
Given video footage of a person's face, we present new tech-
niques to automatically recover the face position and the fa-
cial expression from each frame in the video sequence. A 3D
face model is fitted to each frame using a continuous opti-
mization technique. Our model is based on a set of 3D face
models that are linearly combined using 3D morphing. Our
method has the advantages over previous techniques of fit-
ting directly a realistic 3-dimensional face model and of re-
covering parameters that can be used directly in an anima-
tion system. We also explore many applications, including
performance-driven animation (applying the recovered posi-
tion and expression of the face to a synthetic character to pro-
duce an animation that mimics the input video), relighting
the face, varying the camera position, and adding facial orna-
ments such as tattoos and scars.

1 Introduction
There are many techniques and tools that can be used to cre-
ate facial animations. These tools can be as simple as a pencil
and a sketchpad or as complex as a physically-based 3D face
model. In either case, creating believable facial animations is
a very delicate task that only talented and well-trained ani-
mators can achieve. An alternative is to generate facial ani-
mations based on video footage of a real person's face. The
face can be tracked throughout the video by recovering the
position and expression at each frame. This information can
then be optionally modified further to create a novel anima-
tion.

Recovering the face position and the facial expression au-
tomatically from a video is a difficult problem. The difficulty
comes from the wide range of appearances than can be gen-
erated by the human face under different orientations, illu-
mination conditions and facial expressions. The creation of a
model that encompasses these variations and allows the ro-
bust estimation of the face parameters is thus a very challeng-
ing task.

This problem can be made easier by using markers on
the face such as heavy makeup [23] or a set of colored dots
stuck onto the actor's face [12, 25]. Once the position of the
markers has been determined, the position of the face and

the facial features can easily be derived. Williams [25] pio-
neered this technique, tracking 2D points on a single image.
Guenteret al. [12] extended this approach to tracking points
in 3D using multiple images.

The use of markers on the face limits the type of video
that can be processed; instead, computer vision techniques
can be leveraged to extract information from a video of an un-
marked face. These tracking techniques can be classified into
two groups depending on whether they use a two-dimensional
or three-dimensional model.

Two-dimensional facial feature trackers can be based on
deformable or rigid patches [3, 7, 13], or on edge or fea-
ture detectors [4, 16, 18]. The use of a 2D model limits the
range of face orientations that can be handled. For large vari-
ations of face orientation, the three-dimensional properties of
the face need to be modeled.

Different approaches have been taken to fit a 3D face model
to an image or a sequence of images. One approach is to build
a physically-based model that describes the muscular struc-
ture of the face. These models are fitted by computing which
set of muscle activations best correspond to the target image.
Terzopoulos and Waters [23] estimated muscle contractions
from the displacement of a set of face markers. Other tech-
niques compute an optical flow from the image sequence and
decompose the flow into muscle activations. Essa and Pent-
land [11] built a physically-based face model and developed
a control-theoretic technique to fit it to a sequence of images.
Decarlo and Metaxas [8] employed a similar model that in-
corporates possible variations in head shape using anthropo-
metric measurements. Comparable techniques [1, 6, 17] are
used in model-based image coding schemes where the model
parameters provide a compact representation of video frames.
These approaches use a 3D articulated face model to derive a
model for facial motion. Using the estimated motion, the 3D
model can be animated to synthesize an animation similar to
the input sequence. However, the synthesized images are not
used for the analysis.

More recent techniques employ ananalysis-by-synthesis
approach where target face images are analyzed by compar-
ing them to synthetic face images. La Casciaet al.[15] model
the face with a texture-mapped cylinder. The textures are ex-

tracted by building a mosaic from the input image sequence.
Schodlet al. [22] use a more detailed geometric model to
estimate the face position and orientation. These two mod-
els however allow neither the facial expression nor the iden-
tity of the face in the target image to be estimated. Vetter and
Blanz [24] built a more general statistical model of the human
face by processing a set of example faces that includes vari-
ations in identity and expression. Their model consists of a
linear combination of scanned 3D face models. They assume
that the head pose is known and compute which linear combi-
nation of the sample faces best fit the target image. Vetter and
Blanz's linear combination approach is similar to ours. Our
morphing technique however is different. Their model sepa-
rates shape and texture information. We believe these quan-
tities are correlated, and we consider expression vectors that
include both shape and texture. Our goal too is different; we
do not attempt to estimate the identity of the person but rather
to track the person's facial expression and head pose.

In this paper, we present our model-based face tracking
technique. Our technique consists of fitting a 3D face model
to each frame in the input video. This face model is based on
the work of Pighinet al.[20] and uses a linear combination of
3D face models, each corresponding to a particular facial ex-
pression. The use of realistic face models allows us to match
realistic renderings of faces to the target images. Moreover,
we directly recover parameters that can be used in an anima-
tion system. To fit the model, we minimize an error function
over the set of facial expressions and face positions spanned
by the model. The fitting process employs a continuous opti-
mization technique.

Tracking faces can be employed to create novel facial an-
imations. For instance the extracted facial parameters can be
reused to animate synthetic faces. Such performance-driven
animations produce a sequence that mimics the original input
video [10, 19, 25]. Performance-driven animations are useful
for avatar control, identity hiding, and easy home-made ani-
mations. Another application is to modify the input video to
produce a novel animation or special effects. For instance,
Bregler et al. [5] segment the input video into small units
corresponding to visemes. These video segments can then be
rescheduled according to a different soundtrack to produce a
novel video.

In this paper, we present several applications. We reuse
the recovered face parameters to generate performance-driven
animations. Moreover, since the fitted model provides us with
an approximation of the geometry of the face, we can alter
the input video. These alterations include changing the light-
ing conditions, changing the camera angle, and adding facial
decorations such as tattoos and scars.

The remainder of this paper first describes the model fitting
technique we developed and then illustrates several ways to
generate novel animations or special effects from the original
footage.

1

w

w

0

α

α

ww*

0

2

1

Figure 1: Relationship between blending weights and expres-
sion parameters with 3 basic expressions.

2 Model fitting
In this section, we describe how we build the face model and
how it is parameterized. We also discuss in detail the opti-
mization technique used to fit the model to a sequence of im-
ages.

2.1 3D face model
The model we propose to fit to the video is a linear com-
bination of 3D texture-mapped models, each corresponding
to a particular basic facial expression. Examples of basic ex-
pressions are joy, anger, sadness, surprise, disgust, pain. By
varying locally the percentage of each basic expression on
different parts of the face, a wide range of expressions can be
generated.

We synthesize realistic face models using a technique de-
veloped by Pighinet al. [20]. The 3D models are recovered
by fitting a generic face model to a set of photographs of a
person's face. The texture map is extracted by combining the
different photographs into a single cylindrical texture map.

Our model represents a full human head, but only the facial
mask is parameterized, while the rest of the face (e.g., neck
and hair) is constant. The face is parameterized by a vector of
parametersp = p1, ...,pn. These parameters form two subsets:
the position parameters and the expression parameters. The
position parameters include a translationt, which indicates
the position of the center of the face, and a rotationR, which
indicates its orientation. The facial expression is determined
by a set of blending weightsw1, ...,wn, one for each basic
expression in the model. We constrain these weights to sum
to 1. To enforce this constraint, we use a set of expression
parameters�1, ...,�n�1, which are obtained by projecting the
weightswk onto the hyperplane

P
k wk = 1. The vector of

blending weightsw = (w1, ...,wn) is decomposed using the
vector of expressions parameters� = (�1, ...,�n�1):

w = Q� + w� (1)

whereQ is a matrix whose column vectors span the hyper-
plane

P
k wk = 0 andw� is a vector belonging to

P
k wk = 1.

Figure 1 illustrates the relationship between the blending
weights and the expression parameters. To span a wider range
of facial expressions, the face is split into several regions that
can each be controlled independently. We thus use a set of
expression parametersf�lg for each region. The partition we
used in our experiments is shown in figure 2.

Rendering the model is done by linearly combining the ba-
sic expressions using 3D morphing. A consensus geometry is
computed by linearly interpolating the basic expression ge-
ometries using the blending weightswk. The model is ren-
dered multiple times, once for each basic expression. These
renderingŝI k, are then blended together using the weightswk

to produce the final imagêI :

Î =
X

k

wkÎ k (2)

2.2 Optimization procedure
Fitting a linear combination of faces to an image has already
been explored by different research groups. Edwardset al.[9]
developed a model built out of registered face images. In their
work, a principal component analysis is applied to the set of
faces to extract a set of parameters. The dependencies be-
tween the parameters and the images generated by the model
are approximated by a linear function. This approximation is
then used in an iterative optimization technique, using a vari-
ant of the steepest descent algorithm. Jones and Poggio [14]
constructed a similar 2D model and use a more sophisticated
fitting technique. They use a stochastic gradient method that
estimates the derivatives by sampling a small number of pix-
els. The technique we develop uses second-order derivatives
of the error function. We also investigate both analytical and
finite-difference computations of the partial derivatives.

To fit our model to a target face imageI t, we developed
an optimization method whose goal is to compute the model
parametersp yielding a rendering of the modelÎ (p) that best
resembles the target image. An error function�(p) is used to
evaluate the discrepancy betweenI t andÎ (p):

�(p) =
1
2
kI t � Î (p)k

2
+ D(p)

=
1
2

X
j

[I t(xj , yj)� Î (p)(xj, yj)]2 + D(p)
(3)

where (xj , yj) corresponds to a location of a pixel on the image
plane andD(p) is a penalty function that forces each blend-
ing weight to remain close to the interval [0..1]. The function
D(p) is a piecewise-quadratic function of the following form:

Figure 2: Partitioning of the face. The different regions are
rendered with different colors.

D(p) = c
X

k

[min(0,wk)
2 + max(0,wk � 1)2] (4)

wherec is a constant.
The parameters are fitted in several phases that optimize

different sets of parameters. We start by estimating the posi-
tion parameters and then independently estimate the expres-
sion parameters in each region. Treating these parameters in-
dependently allows us to apply different optimization meth-
ods to them. All the parameters are estimated using variants
of the Levenberg-Marquardt (LM) algorithm [21] to mini-
mize the function�. We tried other optimization techniques
such as steepest descent and Newton (BFGS), but the LM
algorithm produced better results for the estimation of the ex-
pression parameters.

The LM algorithm is a continuous optimization technique
based on a second-order Taylor expansion of�. This iterative
algorithm starts from an initial estimate of the parameters and
computes at each iteration a new set of values that reduces�

further. The parameters are updated by taking a step�p at
each iteration. This step is given by the expression:

[J(p)TJ(p) + �I + H(p)]�p = �J(p)T[I t � Î (p)] �rD(p)
(5)

whereI is the identity matrix,J(p) is the Jacobian of̂I (p),
rD(p) andH(p) are the gradient and Hessian ofD(p), respec-
tively and� is a parameter used to stabilize the optimization.

2.3 Computing the Jacobian images
We explored two ways of computing the JacobianJ(p). The
first one uses finite differences and requires sampling the er-
ror function multiple times at each iteration. The second one

Figure 3: Tracking sequence. The bottom row shows the result of fitting our model to the target images on the top row.

uses an analytical expression of the Jacobian and does not re-
quire evaluating�. On the one hand, the analytical Jacobian
can be more efficient than the finite-difference approxima-
tion if evaluating the error function is expensive. On the other
hand, using finite differences may produce better results if
the error function is not smooth enough. In our case evalu-
ating the error function is fairly time consuming because it
involves rendering the 3D face model.

Finite differences

We use central differences to approximate the value of the
Jacobian. This is more costly than using forward differences
but produces a better approximation of the derivatives. Each
entry of the Jacobian matrix is computed using the following
formula:

dÎ
dpi

(p) �
Î (p +�piei)� Î (p��piei)

2�pi
(6)

whereei is the i-th vector of the canonical basis and�pi is
a variation of the parameterpi . In practice, we determined
appropriate values for�pi by experimentation.

Analytical Jacobian

Given thatÎ is a function of the position in the image plane
(xj , yj) for a given pixel and of the model parameterspi , we
have:

dÎ
dpi

=
@ Î
@xj

@xj

@pi
+

@ Î
@yj

@yj

@pi
+

@ Î
@pi

, (7)

The vector (@ Î
@xj

, @ Î
@yj

) is the intensity gradient of imagêI at
pixel j. It is computed using a Sobel filter [2]. The par-

tial derivative @ Î
@pi

can be computed by differentiating equa-
tion (2):

@ Î
@pi

=
X

k

@wk

@pi
Î k. (8)

To compute the partial derivatives@xj

@pi
and @yj

@pi
, we need to

study the dependencies between the coordinates in the image
plane (xj , yj) and the model's parameters. The 2D point (xj , yj)
is obtained by projecting a 3D point,mj , onto the image plane.
We can thus rewrite (xj , yj) = P(Rmj + t), whereP is a pro-
jection whose optical axis is thez-axis. The transformationP
has two componentsPx andPy, so thatxj = Px(Rmj + t) and
yj = Py(Rmj + t). Using the chain rule, we obtain:

@xj

@pi
=
@Px

@m0

j

T @m0

j

@pi
(9)

@yj

@pi
=
@Py

@m0

j

T @m0

j

@pi

wherem0

j = Rmj + t. We detail the computation of the partial
derivatives ofP, Rmj + t andwk in Appendix A.

2.4 Tracking results
The experiments we ran use a partition of the face into three
regions: the mouth area, the eyes area, and the forehead, as
illustrated in figure 2. In all our experiments, the values of the
parameters are initialized with a rough visual guess.

We tried different optimization variants and studied which
ones were most appropriate for the different parameters. For
the position parameters, the analytical Jacobian produced
good results and allowed faster computations. For the expres-
sions parameters, the finite differences Jacobian produced
better results than the analytical version. This difference can

0

1

2

3

4

5

6

0 10 20 30 40 50 60 70 80

(a)

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 10 20 30 40 50 60 70 80

r0
r1
r2

(b)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80

anger
neutral

joy

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80

anger
neutral

joy

(c)

Figure 4: Plots for tracking synthetic sequence. The RMS er-
ror, rotation parameters expressed in radian (b), and expres-
sion parameters (c) are plotted as functions of frame num-
bers. The ground truth values of the parameters (solid) are
compared to the estimated values (dots and dashes).

be explained in terms of the difference in behavior of the error
function on these two set of parameters. The dependence of
the error function on the position parameters is fairly smooth,
while its dependence with respect to the expression parame-
ters is not.

We also noticed that there were important color differences
between the target images and the renderings of the model.
These differences were introduced by the different optical
systems used to capture the data: several cameras were used
to build the model textures and a camcorder to record the
video footage. Our optimization technique would try to com-
pensate for these color differences by adjusting the expres-
sion parameters. We reduced this problem by using bandpass
filtering on both the target images and the model renderings
when estimating the expression parameters.

We explored different ways of choosing the expression pa-
rameters. These parameters are specified by the basisQ. Each
parameter represents a direction in the linear space of ex-
pressions spanned by the basic expressionsE1, ...,En. A nat-
ural set of directions is the differences between a particular
expression, for instanceE1, and the rest of the expressions:
E2 � E1, ...,En� E1. This parameterization does not take into
account possible similarities between expressions and could
result in directions that are correlated. Choosing a set of or-
thogonal direction can improve the robustness of the facial
parameters estimation. We used an orthogonalization tech-
nique (Gram-Schmidt) to generate an orthonormal basis. Be-
cause the sets of basic expressions we chose were small and
contained fairly distinct facial expressions, using an orthogo-
nal basis improved only slightly the estimation of the parame-
ters. For a larger set of basic expressions, applying a principal
component analysis to the basic expressions might produce a
small set of parameters for the principal uncorrelated direc-
tions.

We used a simple prediction scheme to fit the model to a
sequence of frames. The parameters are linearly extrapolated
using the results from the two previous frames.

Figure 3 illustrates some tracking results using our tech-
nique. The model used four basic expressions: sleepy, joy,
sulky, and neutral. Each frame took on average 2 minutes to
be fitted at a 300 by 300 resolution. Although these perfor-
mances are far from permitting real time tracking, all the ap-
plications we explored can be done as postprocessing on a
video. A limitation of our approach is seen in the second col-
umn where the shape of the eyebrows in the fitted model do
not match these of the target frame. This problem occurs be-
cause this particular eyebrow shapes are not included in the
linear space spanned by the set of basic expressions.

To further test our tracking technique, we generated a syn-
thetic animation using our face model. The model used three
basic expressions: anger, neutral, and joy. We analyzed this
sequence with the same model. The plots in figure 4 describe
the tracking results as a function of frame number. The evo-

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 5: Applications. Animations of synthetic models are shown on the top row. The model (rendered in (b)) has been fitted
to the target image (a). For the same frame, the facial expression can be exaggerated (c), the viewpoint can be changed (d), or
the animation parameters can be used for a different model (e). The bottom row illustrates modifications of the target frame (a).
The lighting has been changed in (g) by introducing a synthetic light source. A greyscale rendering of the lighted estimated
geometry (f) was used to modulate the target image. Finally, synthetic elements can be added to the face such as the tattoos
in (i). These tattoos were rendered separately using the 3D model (h) and then composited on top of the target image.

lution of the root mean square error is given in figure 4(a).
The estimated head position and the blending parameters in
the forehead region for the same sequence are illustrated in
figure 4(b) and figure 4(c) respectively. The position and ori-
entation parameters are estimated fairly precisely, whereas
the estimated values of the expression parameters are signif-
icantly different from their true values. Although the expres-
sion parameters are not accurately estimated, the rendered fit-
ted model at each frame is very close to the input frames.

3 Applications
Once we have recovered the position and the geometry of the
face at each frame, we can use this information to generate
novel animations. We considered two different types of appli-
cations. The first one is to apply the recovered parameters to
a synthetic face to produce a performance-driven animation.
The second set of applications is to alter the original video
footage using the recovered 3D geometry. These alterations
include changing the lighting, and adding computer graphics
elements to decorate the face. Figure 5 illustrates these ap-
plications. A set of mpeg movie files provide more complete
examples. A description of these files can be found in Ap-
pendix B.

3.1 Performance-driven animation
The recovered parameters can be used to animate any face
model using an animation tool. The animation parameters

can be edited to produce different animations; for instance,
the expressions can be exaggerated or the viewpoint can be
changed. These applications are illustrated in figure 5. The
target image in figure 5(a) has been fitted to the model ren-
dered in 5(b). As shown in figure 5(c), the same expression
can be exaggerated. This exaggeration was obtained by mul-
tiplying the expression parameters by a positive constant. For
a teleconferencing system the synthetic reconstruction can be
seen from a different angle (figure 5(d)) to simulate the rela-
tive positions of the different participants. Finally, the anima-
tion parameters can be used to animate a different character
(figure 5(e)).

3.2 Relighting

Relighting images of real scenes is a difficult problem since it
requires estimating the reflectance properties of the objects in
the scene. Yu and Malik [26] tackle this problem for images
of buildings taken under different illumination conditions. In
our approach we did not try to recover the albedo of the face;
instead, we just modulate the colors in the target image. The
addition of a virtual light source is simulated as follows. First,
the estimated face geometry is rendered in a grey color using
the synthetic light source (figure 5(f)). Then this rendering
is used to scale the colors in the original frame. Figure 5(g)
shows the original frame with a dramatic change in lighting.

3.3 Adding facial decorations

The geometry and the texture of the face can be modified in
the original footage. For instance, we could modify the ge-
ometry by adding a nose ring to the person in the video. This
modification is done by rendering the modified face geometry
with the original frame as a texture map. The texture map co-
ordinates are computed by projecting the mesh vertices onto
the image plane using the recovered camera parameters.

Modifying the face texture allows us to add decorations
to the face (e.g., tattoos and scars). These modifications are
introduced by rendering the recovered geometry with a cylin-
drical texture map bearing the decorations (figure 5(h)). The
rendering is then composited over the original frame (fig-
ure 5(i)). Notice how the tattoos are deformed and occluded
according to the face geometry. These effects would be im-
possible to obtain using a 2D tracking technique.

4 Conclusion and future work

In this paper, we have introduced a novel technique for esti-
mating the head's position and facial expression from video
footage. We use a realistic face model in an analysis-by-
synthesis approach. Our model is a linear combination of
3D face models, which can be generated by photogrammetric
techniques or 3D scanning. The quality of the model allows
better tracking results than with other methods. We use a con-
tinuous optimization technique to fit the model and give an
analytical derivation of the computations.

We have also presented a wide range of applications that
demonstrate the usefulness of this technique, including sim-
ple performance-driven animations for changing viewpoint,
identity, emotion, and more subtle special effects such as re-
lighting the face or adding tattoos.

In the future, we would like to improve our system in dif-
ferent ways:

We used bandpass filtering to correct for color differences
between the target images and the model renderings. These
adjustments could also be done by adding a lighting model to
our face model. The parameters of the lighting models would
then be estimated along with the rest of the face parameters.

Our 3D modeling-from-images technique results in a fairly
coarse approximation of the face geometry and texture. Using
a 3D scanner would provide more accurate models that could
substantially improve the tracking results.

Finally, we could employ more effective prediction tech-
niques such as Kalman filtering.

As we try to build computer systems that interact with their
users in a more natural fashion, analyzing face images is be-
coming a key issue. We believe that modeling, animating, and
tracking the human face as a linear combination of sample
faces is a powerful paradigm.

References
[1] K. Aizawa and H. Harashima. Model-based analysis synthesis
image coding (MBASIC) system for a person's face.Signal Pro-
cessing: Image Communication, pages 139–152, 1994.
[2] D.H. Ballard and C.M. Brown.Computer Vision. Prentice-Hall,
Englewood Cliffs, New Jersey, 1982.
[3] M. Black and Y. Yacoob. Tracking and recognizing rigid and
non-rigid facial motions using local parametric models of image
otions. InProceedings, International Conference on Computer Vi-
sion, pages 374–381. 1995.
[4] A. Blake and M. Isard. Active Contours: The Application of
Techniques from Graphics, Vision, Control Theory and Statistics to
Visual Tracking of Shapes in Motion. Addison Wesley, 1998.
[5] C. Bregler, M. Covell, and M. Slaney. Video Rewrite: driving vi-
sual speech with audio. InSIGGRAPH 97 Conference Proceedings,
pages 353–360. ACM SIGGRAPH, August 1997.
[6] C.S. Choi, K. Aizawa, H. Harashima, and T. Takebe. Analy-
sis and synthesis of facial image sequences in model-based image
coding. IEEE Transactions on Circuits and Systems for Video Tech-
nology, 4(3):257–274, June 1994.
[7] M. Covell. Eigen-points: control-point location using principal
component analysis. InProceedings, Second International Confer-
ence on Automatic Face and Gesture Recognition, pages 122–127.
October 1996.
[8] D. Decarlo and D. Metaxas. Deformable model-based shape and
motion analysis from images using motion residual error. InPro-
ceedings, First International Conference on Computer Vision, pages
113–119. 1998.
[9] G.J. Edwards, C.J. Taylor, and T.F. Cootes. Interpreting face im-
ages using active appearance models. InProceedings, Third Work-
shop on Face and Gesture Recognition, pages 300–305. 1998.

[10] I. Essa, S. Basu, T. Darell, and A. Pentland. Modeling, tracking
and interactive animation of faces and heads using input from video.
Computer Animation Conference, pages 68–79, June 1996.

[11] I. Essa and A. Pentland. Coding, analysis, interpretation, and
recognition of facial expressions.IEEE Transactions on Pattern
Analysis and Machine Intelligence, 19(7):757–763, July 1997.

[12] B. Guenter, C. Grimm, D. Wood, H. Malvar, and F. Pighin. Mak-
ing faces. InSIGGRAPH 98 Conference Proceedings, pages 55–66.
ACM SIGGRAPH, July 1998.

[13] G.D. Hager and P.N. Belhumeur. Real-time tracking of image
regions with changes in geometry and illumination. InProceedings,
Computer Vision and Pattern Recognition, pages 403–410. 1996.

[14] M.J. Jones and T. Poggio. Hierarchical morphable models. In
Proceedings, International Conference on Computer Vision, pages
820–826. 1998.

[15] M. La Cascia, J. Isidoro, and S. Sclaroff. Head tracking via
robust registration in texture map images. InProceedings, IEEE
Conference on Computer Vision and Pattern Recognition. 1998.

[16] A. Lanitis, C.J. Taylor, and T.F. Cootes. A unified approach for
coding and interpreting face images. InFifth International Confer-
ence on Computer Vision (ICCV 95), pages 368–373. Cambridge,
Massachusetts, June 1995.

[17] H. Li, P. Roivainen, and R. Forchheimer. 3-D motion estimation
in model-based facial image coding.IEEE Transactions on Pattern
Analysis and Machine Intelligence, 15(6):545–555, June 1993.

[18] K. Matsino, C.W. Lee, S. Kimura, and S. Tsuji. Automatic
recognition of human facial expressions. InProceedings of the

IEEE, pages 352–359. 1995.
[19] E. Petajean and H.P. Graf. Robust face feature analysis for au-

tomatic speechreading and character animation. InProceedings od
International Conference on Automatic Facial and Gesture Recog-
nition, pages 357–362. 1996.

[20] F. Pighin, J. Hecker, D. Lischinski, R. Szeliski, and D. Salesin.
Synthesizing realistic facial expressions from photographs. In
SIGGRAPH 98 Conference Proceedings, pages 75–84. ACM SIG-
GRAPH, July 1998.

[21] W.H. Press, B.P. Flannery, S.A. Teukolsky, and W. T. Vetterling.
Numerical Recipes in C: The Art of Scientific Computing. Cam-
bridge University Press, Cambridge, England, second edition, 1992.

[22] A. Schodl, A. Ario, and I. Essa. Head tracking using a textured
polygonal model. InWorkshop on Perceptual User Interfaces, pages
43–48. 1998.

[23] D. Terzopoulos and K. Waters. Analysis and synthesis of facial
image sequences using physical and anatomical models. InIEEE
Transactions on Pattern Analysis and Machine Intelligence, pages
569–579. june 1993.

[24] T. Vetter and V. Blanz. Estimating coloured 3D face models
from single images: an example based approach. InProceedings,
European Conference on Computer Vision, pages 499–513. 1998.

[25] L. Williams. Performance-driven facial animation. InSIG-
GRAPH 90 Conference Proceedings, volume 24, pages 235–242.
August 1990.

[26] Y. Yu and J. Malik. Recovering photometric properties of ar-
chitectural scenes from photographs. InSIGGRAPH 98 Conference
Proceedings, pages 207–217. ACM SIGGRAPH, July 1998.

Appendix
Appendix A: Analytical Jacobian
We detail further the computation of the analytical Jacobian started
in section 2.3. The partial derivatives of the projectionP, the trans-
formation Rmj + t, and the blending weightwk with respect to a
parameterpi are examined.

Partial derivatives of P

The projectionP is a mapping from 3D to 2D that takes a point
m = (X,Y,Z) as a parameter.

@Px

@m
=

0
@ f

Z
0
�f X

Z2

1
A and

@Py

@m
=

0
@ 0

f
Z
�f Y

Z2

1
A

Partial derivatives of Rmj + t

The partial derivative with respect topi can be expanded as:

@(Rmj + t)
@pi

=
@R
@pi

mj + R
@mj

@pi
+

@t
@pi

This expression depends on the nature ofpi .

� If pi is a blending weight (pi = �l): since the model geome-
try is a linear combination of the basic expressions geometry,
the pointmj is a linear combination of points from the basic

expressionsmjk. We can then apply the following derivation:

@(Rmj + t)
@�l

= R
@mj

@�l
= R

@(
P

k wkmjk)

@�l
= R
X

k

@wk

@�l
mjk

� If pi = R: we replace the rotation matrixR with R̂R; whereR̂
is parameterized by an angular velocity! = (!x,!y,!z), and
is given by Rodriguez's formula:

R̂(n̂,�) = I + sin�X(n̂) + (1� cos�)X2(n̂)

where� = k!k, n̂ = !=� andX(n̂) is the cross product opera-
tor:

X(!) =

"
0 �!z !y

!z 0 �!x

�!y !x 0

#

A first-order approximation of̂R is given byI + X(!). The ro-
tationR̂R is parameterized by the vector!. We are thus inter-
ested in computing the partial derivatives ofRmj + t according
to some!l , component of!:

@(Rmj + t)
@!l

=
@R
@!l

mj =
@(I + X(!))

@!l
Rmj =

@X(!)
@!l

Rmj

Once a step in the LM algorithm has been computed, the rota-
tion R is updated using

R R̂R

� If pi = tx, or pi = ty, or pi = tz, then the partial derivative is
equal to (1, 0, 0), or (0, 1, 0), or (0, 0, 1) respectively.

Partial derivatives of wk

Clearly:

@wk

@pi
= 0, if pi is not an expression parameter.

If pi is an expression parameter, for instance�l , then the partial
derivative can be computed by differentiating equation (1):

@wk

@�l
= Q(k, l)

Appendix B: Movie files
A set of mpeg files illustrating our tracking re-
sults and applications are available on-line at
http://www.cs.washington.edu/research/projects/grail2/www/projects/
realface/tracking.html.

Tracking results: trk1.mpg, trk2.mpg, trk3.mpg, and trk4.mpg.

Applications:
� exg3.mpg: exaggeration of facial expressions.

� chv3.mpg: change in viewpoint.

� fem2.mpg: animation transposed to different model.

� rel2.mpg: relighting of video footage.

� tat2.mpg: addition of synthetic elements.

