
Published in ACM Transactions on Graphics (SIGGRAPH 2003)

Layered Acting For Character Animation

Mira Dontcheva Gary Yngve Zoran Popović

University of Washington

Figure 1: While watching a real-time display of her actions, an animator performs a hopping motion, sketching the trajectory of a kangaroo.

Abstract

We introduce an acting-based animation system for creating and
editing character animation at interactive speeds. Our system re-
quires minimal training, typically under an hour, and is well suited
for rapidly prototyping and creating expressive motion. A real-time
motion-capture framework records the user’s motions for simulta-
neous analysis and playback on a large screen. The animator’s real-
world, expressive motions are mapped into the character’s virtual
world. Visual feedback maintains a tight coupling between the an-
imator and character. Complex motion is created by layering mul-
tiple passes of acting. We also introduce a novel motion-editing
technique, which derives implicit relationships between the anima-
tor and character. The animator mimics some aspect of the charac-
ter motion, and the system infers the association between features
of the animator’s motion and those of the character. The anima-
tor modifies the mimic by acting again, and the system maps the
changes onto the character. We demonstrate our system with sev-
eral examples and present the results from informal user studies
with expert and novice animators.

Keywords: Character Animation, Motion Editing, Statistical
Analysis, 3D User Interfaces, Motion Transformation

1 Introduction

Animation should come from the heart, not from the head. Current
modeling and animation packages favor control over ease of use
and demand a level of expertise from the user that is out of reach
for all but a few highly skilled animators. Direct motion capture

allows expert actors to animate human characters, but is fraught
with a different set of difficulties, particularly when animating non-
human characters and when attempting to edit existing motion. We
present an interface that supports the many benefits of performance
animation yet allows for the mapping betweeen the animator and
character to be established in ways that are both flexible and easy
to understand.

We had several goals in mind when designing our system. We
wanted our system to have an easy-to-use and efficient interface ap-
propriate for a novice with little training. We wanted to give the user
control and the ability to create motions that have a sense of person-
ality, often lacking in 3-d animation. Our results and user studies
indicate that we have made progress towards achieving these goals.

We introduce a system that allows users to create and edit char-
acter animation by acting. A motion capture system and a set of re-
flective props, or widgets, provide the connection between the actor
and the character, as shown in Figure 1). The motion capture system
frees the animator from the confines of a mouse, a keyboard, and
a limited workspace. The user animates by acting while watching
a large display for instant feedback. The system requires minimal
training, typically under an hour, because it innately captures users’
expressiveness from their acting.

The key contributions of our work lie in how the animator’s mo-
tions are mapped to those of the character, and how animation can
be built upon layer by layer. The mapping from actor to character is
created by a combination of explicit and implicit controls. Explicit
control is used for rapid prototyping of the initial animation. In each
layer, multiple related degrees of freedom (DOFs) of the character
are modified simultaneously. Layering allows the animator to fo-
cus on one aspect of the animation at a time, whereas working with
all aspects at once can be overwhelming. When editing, implicit
control can be created by automatically inferring which DOFs the
animator is trying to control. The system implicitly creates the map-
ping of real-world motion to that of the character for editing; the
mapping may involve both spatial and temporal transformations.

The rest of the paper proceeds as follows. First, we discuss rele-
vant related work and give an overview of the system and the inter-
face. We then provide details of the algorithms for motion creation,
motion editing with explicit transformations, and inferred motion
editing with implicit transformations. Finally, we conclude with
results, user studies, and future work.

1



Published in ACM Transactions on Graphics (SIGGRAPH 2003)

2 Related Work

The research presented in this paper was inspired by previous
contributions to interactive and easy-to-learn interfaces, especially
those intended for novices. Existing work includes sketching out-
lines into 3-d shapes [Igarashi et al. 1999], sculpting surfaces,
[Schkolne et al. 2001], and using plush toys for interaction with
virtual environments [Johnson et al. 1999].

Many animators rely on explicit keyframing, where at a specific
instant in time, they have full control of a character. The difficulty
comes when animators want to express dynamic, fluid motion, par-
ticularly when multiple degrees of freedom should be manipulated
in unison. We allow the user to edit multiple DOFs over a period of
time, and because time is inherent in the process of acting, rather
than in an axis of a graph, we retain the intuition that is lacking
from keyframes and graph editors.

Motion capture has a long history in computer animation as a
mechanism for transferring live motion to the digital domain. Mo-
tion capture can record the nuances that give feeling and expres-
siveness to motion; however, it also has several limitations. The
computer-generated character may not have the same physique or
dimensions as the human actor. The desired motion may be too
dangerous to act and capture in real life or may involve impossi-
ble motions requiring superheroic speed or strength. We rely on
motion-capture technology to support our work, but we do not tie
the character’s motion directly to that of the actor. This indirect
interaction links us closer to the realm of puppeteering.

Puppeteering and performance animation have been shown to be
powerful tools for the expert user. An animator uses a specialized
input device, ranging from an exoskeleton to a force-feedback sty-
lus, to control a character through some direct mapping of DOFs.
Personality is imparted directly onto the character from the nature
of the control. Our work follows on this work with the goal of en-
abling novice users to easily create expressive animation.

Although the earliest computer puppetry work dates back to the
late sixties [Sturman 1998], modern performance animation traces
back to the Jim Henson Company [Walters 1989] and deGraf and
Wharman [de Graf 1989]. Following the debut of Mike the Talk-
ing Head at Siggraph 89, Protozoa [de Graf and Yilmaz 1999],
Medialab [Benquey and Juppe 1997], and others deployed per-
formance animation systems on television programs, showing the
power of using acting for animation. Our work differs in several
ways. Whereas existing systems use direct or preassigned map-
pings, we generalize the mapping between the actor and charac-
ter, granting flexibility with the character and the motion-capture
rig. We animate parts of the character individually using separate
motion-capture takes, whereas traditionally, most parts of a charac-
ter are animated simultaneously. Unlike existing performance ani-
mation systems, ours requires minimal calibration, making our tool
useful for rapid prototyping and accessible to novices.

Several researchers have investigated computer puppetry. Shin,
et al. developed a computer puppetry system allowing a performer
to animate an entire character online [Shin et al. 2001]. They infer
context from the motion, which they use to guide inverse kinemat-
ics. Our goals differ, as they want a fully markered puppeteer to
create instant motion for a retargeted character, but we want an ani-
mator to operate a widget to create and edit motion in layers for an
arbitrary character. Gildfind recognized the impracticality of tailor-
ing puppetry controls for each device, character, and user [Gildfind
et al. 2000]. His system creates the controls through iterations of
a genetic algorithm with user-provided fitness feedback. We differ
from Gildfind in that we require minimal training.

Snibbe and Levin [Snibbe and Levin 2000] explored layering
of motion in the setting of 2-d abstract animation, focusing on us-
ing human movement as an interface for dynamic abstract systems.
Oore et al. [Oore et al. 2002] used motion layering in their ani-

Figure 2: An animator is interacting with our system. The real-
time motion-capture system tracks the widget in her hand (the user
feature). The widget’s motion, X(t), maps to a character feature,
Y (t), and the user’s edits are instantly reflected on the screen.

mation system, which combined direct manipulation of DOFs with
physical controls as guides for more natural joint motion. We ex-
tended their layering to include additive layering, which allows for
refinement of existing motion. In addition, our system allows not
only direct manipulation of DOFs but also indirect manipulation of
relative trajectories through the use of inverse kinematics. We feel
that the layering and indirect interaction make our system easier for
users, especially novices.

There are other related interactive interfaces for animation.
Popović, et al. create precise animations of rigid bodies [Popović
et al. 2000]. Perlin has a simulated actor that responds based on
human intervention [Perlin 1995]. Laszlo et al. directly involve
the animator in the control of interactive physics-based simula-
tions of walking, jumping, and climbing using mixes of continuous
(mouse-based) and discrete (keypress-based) control [Laszlo et al.
2000]. Donald and Henle use haptics to construct new motion by
editing low-dimensional representations of existing motion [Donald
and Henle 2000]. Several systems use gestures to control a perfor-
mance, including the Personal Orchestra [Borchers et al. 2001] and
Andy Wilson’s Seagull from the 1996 Siggraph Digital Bayou.

3 Overview of System

In this section, we give an overview of the system from the hard-
ware and software perspectives.

Hardware Our system uses an 8-camera optical motion-capture
system, a wireless mouse, a wall display screen, and any number of
animation widgets (see Figure 2). The system interprets each wid-
get abstractly as a user feature. We gather motion-capture data at
120 fps and compute the translational and rotational values of each
widget in real time. Each widget is built from Tinker ToysT M and
includes a number of motion-capture markers. Different numbers
of markers on each widget helps the system differentiate between
them. A video wall displays the virtual scene and the user inter-
face, which is manipulated with a wireless mouse. This hardware
setup (see Figure 2) allows the user to move freely around and con-
centrate on interacting with the characters instead of the interface.
Although we use a full motion-capture studio, this machinery is not
essential for our system. The framework we describe can be applied
to any real-time input device, including a mouse; however, interact-
ing with multiple DOFs can be more expressive and efficient.

2



Published in ACM Transactions on Graphics (SIGGRAPH 2003)

Space and Time Interaction Spatial correspondence between
the real and virtual worlds is critical for the interactive process. An-
imators must be able to immerse themselves in the virtual world and
forget about their physical surroundings. We create this spatial cor-
respondence by using camera interaction, ground calibration, and
explicit motion scaling.

To provide for straightforward user interaction, all user motion
is transformed to the camera reference frame in the virtual world.
The user can rotate and translate the camera to any viewpoint and
maintain an interaction pattern that can be an exact replica or mirror
image of her actions. In addition to position and rotation, camera
zoom helps make the corresponding virtual motion easier to under-
stand. For example, if the user moves closer to an object, the motion
is scaled down to provide finer control over the character. As the
user moves farther away from the object, the motion is scaled up,
providing coarser control for sketching trajectories. We describe
camera view and scale controls in more detail in Section 4.

Ground calibration serves as an absolute reference between the
real and virtual worlds. Using the widgets, the animator can specify
a mapping between a plane in the real world, such as a table top,
and the ground in the virtual scene. Using the defined plane (table),
the user can constrain a character to the ground in the virtual world.

One of the advantages of interactive animation is the user’s com-
plete control over timing. The animator observes the existing mo-
tion and reacts to it, creating synchronized motion much more effi-
ciently. To facilitate the animator in this process, we added timing
controls that include speed and interval control over the playback.
Animators can isolate the region they are editing and slow down
the playback speed for more precise control. To aid the user in re-
acting to existing motion, the system provides anticipation guides,
such as ghost renderings of the character’s upcoming motion and
the projections of trajectory streamers onto the ground plane.

Character Interaction An animator interacts with characters
through user and character features. Widgets are used to control
the user features, or DOFs, which map to character features. The
character feature set includes joints and points on the body. The
user interacts with features through direct, indirect, and inferred
mappings, which will be discussed in Sections 5 and 6. For the re-
mainder of the paper, we use X to refer to a user feature over time
and Y to refer to a character feature over time. They can be thought
of as functions that take time as input and produce a vector as out-
put, such as coordinates in space or a quaternion. The notation X(t)
refers to a user feature at time t.

Synthesis and Editing with Layers To create a motion using
the direct or indirect mappings, the animator selects a feature on
the character and then controls that feature with a widget. The wid-
get’s motion is transformed onto the character, and the changes are
reflected instantaneously. The animator can then animate another
feature while watching all previously animated features. This con-
cept of layering gives the user control over timing. Different fea-
tures may require different modes of transformation. We provide
three modes: absolute, trajectory-relative, and additive. The anima-
tor can select the mode of transformation to find the one that feels
and works best. In Section 5, we describe the different interaction
modes in detail.

We edit motion in a similar fashion. A feature is selected, and the
user’s acting modifies the motion already present. This modifica-
tion is another form of layering. For example, an animator can first
define the path over which a creature will travel. The animator can
then edit that path to include local sways or bounces. Performing
these actions simultaneously instead can be more challenging.

Whereas the above-mentioned motion edits involve the explicit
specification of the features to be modified, we also allow the user

to edit a motion with implicit transformations. Instead of select-
ing a feature, the animator mimics some aspect of the motion while
watching it, and the system infers which features to edit. The sys-
tem discovers spatial and temporal mappings to associate the mimic
with the features. The animator then acts again, and the edits are
transformed to the character by these implicit mappings. The algo-
rithms behind the implicit editing are explained in Section 6.

4 Interaction

To make our system appealing to novices, we aim to make the char-
acter interaction easy and flexible. To maintain the intuition of di-
rection regardless of how a user views the scene, we transform all
motion to the camera reference frame. We adjust motion scale to
grant the user freedom in interacting with the system.

4.1 Camera View Mapping

We make character interaction straightforward by mapping the ref-
erence frame of the widget motion to the reference frame of the
camera view. To compute the camera transformation C necessary
for the reference frame mapping, we use the rotational component
of the camera viewing transformation. As motion-capture data is re-
ceived, the system transforms it by C. Transforming the motion to
the exact viewing transformation is not always useful. Sometimes
the users want to map their vertical motion to vertical motion in the
scene, even if they are viewing the scene with a slight downwards
angle or with an overhead view, as is the case when animating the
legs of a spider. We provide this flexibility by ignoring the camera
roll, resulting in a direct mapping between the vertical motion in
user and virtual space.

We use the animation widgets not only for character interaction
but also camera manipulation. The user can control the camera and
move around the scene just as easily as animating a character. To
make the camera motion fluid, we apply damped springs to the wid-
get motions. The user can also attach the camera to a character and
animate while moving with the existing motion, which is helpful if
the character is moving across large distances.

4.2 Scale Adjustment

To make the interface more intuitive, we automatically scale mo-
tion based on camera parameters. In addition to the standard cam-
era transformation, we use cz to represent camera distance. T(cz) is
an extra translation in the local camera z axis (the direction of cam-
era view), resulting in a combined camera transformation, CT(cz).
As the user’s view (controlled by the second widget) gets closer to
the character, the camera distance cz automatically decreases, caus-
ing a linear decrease in motion scale. Similarly, as the user steps
back from the character, the motion scale increases. We scale by
a constant amount S(k) to allow for differences in user motion and
display size; it is manually set and can be calibrated to map the
user’s comfortable range of motion to the display screen size. The
final camera transformation is C′ = S(k)CT(cz).

Motion can also be scaled explicitly. Often an animator may an-
imate the first layer of an animation by using the whole room, but
then may want to switch to using a table as a reference ground plane
for the following layers. To explicitly define scale, we ask the users
to perform the existing animation in the space they plan to use. We
then define the new scale as the mapping of the bounding box of the
existing motion to the bounding box of the sketched motion. This
scaling technique allows for different scale factors along the differ-
ent axes, which can be very helpful for motion that varies primarily
along one axis.

3



Published in ACM Transactions on Graphics (SIGGRAPH 2003)

5 Performance Animation and Editing

Animators create and edit motion by controlling user features X
that interact with character features Y , as described in the overview.
The character feature set includes DOFs and relative handles. A
handle is a point on a character’s skeleton, traditionally used for
controlling a character through inverse kinematics. The point is
some place P on a bone, and its world position is the composition
of the transformation matrices in the skeletal chain starting from
the root, T0T1 . . .Tn−1TnP. A relative handle is a point on a bone
specified in the k-th coordinate frame, namely the frame of a parent
bone in the hierarchy. The location is then TkTk+1 . . .Tn−1TnP.
An example of a relative handle is the fingertip of the right index
finger with respect to the right shoulder’s coordinate frame. In our
system, the handles are prespecified in the character model.

Complex motion is created by layering animation trials, also
known as motion-capture takes. We approach motion layering as
a technique used over multiple features or over a single feature.
When layering across multiple features, the animator layers motion
by animating different body parts separately. For example, first,
the user defines the trajectory of the character and then individually
adds leg and arm motion. The user can also perform layering over
one feature by preserving the underlying motion and adjusting it to
add characteristics or style. Typically, the user starts with a rough
sketch and refines it iteratively, adding detail. Because the animator
is watching the existing motion while animating, the new motion
is synchronized with the existing motion. Throughout the layer-
ing process, an animator may require different feature-interaction
paradigms. Interaction can be absolute, trajectory-relative, or addi-
tive.

5.1 Absolute Mapping

When using the absolute mapping, a feature moves in the world
coordinate system (see Figure 1). This interaction is useful for an-
imating body parts that interact with objects in the scene, such as
the legs of a character that is walking, running, or jumping. When a
feature is selected for interaction, its initial position Y0 and rotation
Y R

0 are stored along with the widget’s position X0 and rotation XR
0 .

The new position Y ′(t) of a feature at time t is the sum of the initial
position Y0 and the change in translation of the incoming data over
time interval [0, t], X(t)−X0.

Y ′(t) = Y0 +C′(X(t)−X0) Y R′(t) = C′XR(t)(XR
0 )−1Y R

0

C′ is the camera matrix that orients the motion so the user main-
tains a consistent interaction pattern throughout the animation pro-
cess. The new rotation Y R′(t) of a feature is the product of the initial
rotation Y R

0 and the difference in rotation over time t, X R(t)(XR
0 )−1.

When using absolute features, the user can interact with the spec-
ified ground plane, allowing for easy animation of feet placement.
If X(t) lies on the prespecified ground plane, Y ′(t) is snapped to the
virtual ground plane via a penalty objective.

5.2 Trajectory-Relative Mapping

This mapping allows for trajectory-relative motion of a selected
feature. This paradigm is useful when the user wants to animate
a feature, such as the head, with reference to some existing parent
motion. The new position of each feature Y ′(t) is the sum of the
initial position Y0 and the transformation K(t) of the change in the
widget’s translation over time interval [0, t], X(t)−X0.

Y ′(t) = Y0 +K(t)C′(X(t)−X0)

K(t) is the composition of the transformation matrices of a pre-
specified parent hierarchy at time t. This hierarchy can include just
the character root or any additional joint transformations, such as
the torso. The user still interacts naturally with handles, while keep-
ing the hierarchical formulation common to joint angles.

5.3 Additive Mapping

The additive mapping is useful when the animator wants to preserve
the underlying animation and add more detail or personality. This
interaction paradigm provides explicit editing controls for existing
motion. The technique adds differences in widget motion to the
existing animation. If the animator does not move, then the object
motion does not change. The new handle position Y ′(t) is the sum
of the existing animation value Y (t) and the change in the widget’s
translation at time t, X(t)−X(t −dt).

Y ′(t) = Y (t)+C′(X(t)−X(t −dt))

Because we aim to retain the underlying animation, the additive
mapping is most useful when the animator wants to make an anima-
tion more expressive or add slight changes to the existing motion.

6 Implicit Editing

In this section, we introduce a means for editing animations using
an implicit mapping. We use the term implicit, or inferred, because
nowhere do the users tell the computer what they desires to edit. It
is the computer’s responsibility to discover the mapping. Because
this problem is harder and ill-posed, we impose restrictions on this
form of editing, namely that the edits preserve the semantics of the
motion. One should not use this tool to edit a walk into a back flip;
rather one uses this tool to change the pace of the walk or the style
of the arm swings.

Despite the restrictions, the implicit mapping has several advan-
tages over explicit edits. Instead of manually selecting features to
control, the animator mimics the motion to be edited, and the sys-
tem discovers the features (relative handles or orientations), perhaps
several. The features may even be shifted in time. In such a case,
when the animator edits those features, the edits are shifted in time
accordingly. The animator does not need to reproduce the coordi-
nate frame of the original creator or guess the spatial scale of the 3-d
animation. The system discovers any translations, rotations, shears,
and scales necessary to map the animator’s motions to the features.
Latency and nonlinear temporal errors such as anticipation or slow
reaction can be detected and corrected. Motions can be edited not
only in space but also in time, such as accelerating the motion or
adjusting the timing of footsteps.

An edit happens in two stages, each prompted by the interface.
First the user mimics some aspect of the character motion. Fea-
tures X and Y are built from the user and character DOFs. The sys-
tem constructs spatial and temporal mappings from user features
to character features and infers what the user wants to control. In
the second stage, the user acts again, and the system remaps the
changes from user features X ′ to character features Y ′. The system
updates constraints as needed and performs a constrained optimiza-
tion to recover the character DOFs best satisfying the features Y ′.
The remainder of this section addresses these details.

A linear transform L maps the user’s mimic X to the character
motion Y with some error, Y = L(X)+ξ (X). Then the user acts an
edit X ′. Instead of calculating the new motion Y ′ = L(X ′)+ξ (X ′),
we calculate the difference between the edit and the mimic and add
the mapped difference to the character, derived by linearity:

Y ′ = L(X ′)+ξ (X ′)+Y −L(X)−ξ (X)

= Y +L(X ′−X)+ξ (X ′)−ξ (X).

4



Published in ACM Transactions on Graphics (SIGGRAPH 2003)

Note that if errors in X ′ and X are correlated (the user made the
same quirky interpretation twice), they will cancel. Also note that
the user’s data needs to be filtered to avoid the additive effects of
high-frequency noise. Because the user’s edit is augmenting the ex-
isting motion rather than replacing it, we feel that the edit will also
likely preserve some aspects of the personality of the original mo-
tion. Whenever features are manipulated, they need to be aligned
in time; that is, the system calculates timewarp T to align X with
Y and timewarp S to align X ′ with T (X):

Y = T (X), Y ′ = S (Y )+L(X ′−S (T (X))).

We will retain this notation for the remainder of the section.

6.1 Creating and Ranking a Mapping

Our system constructs the Cartesian products of user features X
with character features Y (relative handles and orientations). Ori-
entations are represented in a Euclidean space, discussed in Ap-
pendix A. Each pair consists of a user feature X (m–dimensional
data over k time samples) and a character feature Y (n–dimensional
data over k time samples). For each pair, we use the technique of
Canonical Correlation Analysis (CCA) to discover a spatial map-
ping between the two features. We smooth the features for better
performance [Ramsay and Silverman 1997]. CCA is a multidimen-
sional generalization of the correlation coefficient. It finds affine
transformations so that the transformed features have maximal cor-
relation. Colloquially, how can two features be rotated, scaled,
sheared and translated such that they match most closely? CCA
takes features X and Y , zero-means them, and returns linear trans-
formations A and B and canonical coefficients

√
Λ. A coefficient of

1 indicates perfect correlation and 0 represents no correlation. The
corresponding rows in A and B are the canonical vectors [Mardia
et al. 2000]. Appendix B shows how CCA is computed.

CCA has several properties that we exploit. The two inputs to
CCA do not need to be the same dimension or the same rank. The
user does not have to be in a certain orientation or know the differ-
ences in scales with the character. The behavior of CCA is invariant
to any affine transformation. This property is invaluable because
users can act motions in any coordinate frame they prefer.

We use CCA to map a user feature stream X (m×k) to a character
feature stream Y (n× k). CCA zero-means the data and calculates
linear transformations A (m×m) and B (n×m) such that

√
ΛA>(X −µX ) ≈ B>(Y −µY ).

Given the differences X ′−X between the two user motions (re-
call that X’ and X need to be temporally aligned before differenc-
ing), we can solve for the changes to the character features that were
distilled,

Y ′ = S (Y )+B>\
(√

ΛA>(S (X ′−T (X)))
)

.1

The original feature Y and the remapped differences added to-
gether yield the new character feature Y ′. When the errors in align-
ing X ′ with T (X) are too large, we do not difference and directly
calculate

Y ′ = µY +B>\
(√

ΛA>(X ′−µX )
)

.

6.2 Distilling the Mappings

Our algorithm takes the user features and the character features and
runs CCA on all pairs, resulting in hundreds of potential mappings,

1We borrow the notation M\y: find x given the linear system Mx = y.

Figure 3: This kangaroo animation was created with six layers and
was completed in twenty minutes. The first layer specified the kan-
garoo’s trajectory. The second layer added the bending of the legs.
Subsequent layers animated the torso, head, arms, and tail.

each ranked between 0 and 1. Because of spatial and temporal er-
rors from both the user and the input devices, the canonical co-
efficients of the features may vary over repeated experiments. In
addition, sometimes the user may want to control multiple DOFs,
such as two limbs, with just one input. We need a way of analyz-
ing the many possible mappings from the Cartesian products and
distilling the information from the best ones, with some degree of
consistency over multiple trials.

First, we eliminate mappings that are worse than a threshold (ten
percent) from the best mapping. We distill the remaining mappings
by eliminating features that are highly dependent on each other.
Relative handles sharing kinematic subchains reduce to a single fea-
ture by favoring a handle towards the end-effector and a coordinate
frame near the root. For example, the hand in the shoulder frame
is preferred, and the forearm in the shoulder frame discarded. The
hand in the shoulder frame is preferred, and the hand in the elbow
frame discarded. The world coordinate frame is treated specially
because the root translation does not coincide with any natural joint;
only the best mapping with a world coordinate frame is retained.

Although these heuristics are far from robust, they work well in
practice. The motion mappings are solved before the user edits the
motion, and the active limbs on the character are highlighted. The
user can choose to redo the mimicking X if not satisfied with the
inferred mappings. Noise might saturate the subtle frequencies that
discern one coarticulated feature from another. A poor mimic X can
result in a poor mapping Y ≈ L(X) with much error.

6.3 Motion-Curve Subspaces

While testing our system, we discovered that when a user’s motion
is primarily 1-d or 2-d (or twisting rather than tumbling), the data
for the underused dimensions can have non-Gaussian noise, which
can lead to poor mappings. We calculate the principal components
of the user features and remove the subspaces that contribute mini-
mally to the data. When remapping an edit, the same subspaces are
likewise removed. Not only does this projection improve the per-
formance of the system, but it grants the animator the ability to se-
lectively edit on a subspace (by no means axis-aligned) of a feature;
e.g., the animator could ignore horizontal motion and only mimic
and edit vertical motion. When mapping a lower-dimensional edit
to a higher-dimensional feature, the system uses projections of the
original higher-dimensional feature to fill the missing dimensions.

For the differencing and direct equations presented in Subsec-
tion 6.1, if B is rank-deficient, there is no unique solution to the
nonhomogeneous linear equation, because adding any vector y in
the nullspace (B>y = 0) to an existing solution will also be a so-
lution. However, this setback is actually a gain. We calculate the
rowspace projector R = B(B>B)−1B> and the nullspace projector
I −R. Using these projectors, the edits from the user are remapped
onto the rowspace, and the aligned character data S (Y ) fills the
nullspace. The projectors enable the user to act in a subspace while
the system hallucinates sensible data for the remaining dimensions.

5



Published in ACM Transactions on Graphics (SIGGRAPH 2003)

6.4 Timewarping

CCA solves for a spatial mapping, but temporal mappings may be
necessary as well. One could design a functional optimization that
solves for affine spatial mappings and smooth temporal mappings
simultaneously, but it would take too long, and we require an in-
teractive system. First we calculate CCA on phase-shifted features
to account for a constant latency. Because of the closed-form solu-
tion, running CCA for all arrangements of features and phase shifts
takes under a second. We then take the top-ranked mapping and
solve for the timewarp T that maximizes the correlation between
T (X) and Y . This timewarp aligns constraints and accounts for
higher-order errors such as anticipation or slow reaction, discussed
in Appendix C. The user features are timewarped, and the spatial
mappings are recalculated. We also calculate the timewarp S for
aligning the semantics of the aligned mimic T (X) to the edit X ′.
If the user’s feature corresponds to multiple character features, the
remaps are shifted according to the phase offsets detected at first.

6.5 Constraints and Solving for the New Motion

We desire our edits to preserve positional constraints, such as to
keep feet from sliding. Such a constraint pins a handle to a location
for some interval in time. When the user performs an edit and does
not change the semantics of the motion, the number of constraints
remains the same, but they may move in both space and time. If we
allowed the number of constraints to change, it would be harder,
likely indeterminable, to deduce correspondences between the con-
straints. The system first decides if constraints are affected by the
edit. If the user is manipulating the arms, there is no need to worry
about constraints on the feet. The timewarp S between the aligned
mimic T (X) and the user’s edit X ′ warps the positional constraints
in time. For each edited constraint, we sample its handle over the
active interval. Inverse kinematics on the edited features determines
the handle’s values, and the constraint is pinned to their mean.

Our system takes the user and character DOFs and constructs
features. It discovers mappings from user features to character fea-
tures and remaps edits of user features to the character features,
modifying constraints as needed. The final step is to solve for
the character DOFs that match the edited character features, while
maintaining constraints. Quaternions are remapped directly. When
features and constraints are remapped by a world-frame mapping,
the root translations are adjusted to minimize error with the con-
straints and the desired features. In some cases, these changes alone
may be enough to generate good motion because the semantics of
the motion get preserved. These manipulations help because non-
linear solvers are often sensitive to initial conditions. We then solve
the inverse kinematics as a constrained optimization[Popović and
Witkin 1999]. The constraints include positional constraints and
joint bounds. The objective includes desires to match the new char-
acter features, to match the original motion, and to be smooth.

7 Results

We used a variety of characters with arbitrary rigs to evaluate
the versatility and effectiveness of our framework. The animators
started by roughly sketching the trajectories of the motions and then
added details in subsequent layers. The playback speed was usually
slowed down to give the animator more control over the character.
To be effective, animators had to be aware of the speed of the ani-
mation to avoid moving too quickly and creating spastic and unre-
alistic motion. The duration of the animation process depended on
the speed of the playback for the addition of layers and the number
of times a layer was performed before the animator was satisfied.

Figure 4: This spider animation was created with six layers and
was completed in twenty minutes. Pairs of legs were animated as
separate layers. Finally, the user added torso and head motion.

Synthesis Using a combination of the performance animation
and explicit editing techniques described in Section 5, we created
animations of a bird, kangaroo, and a spider. The bird was created
in two layers, and the animation process lasted only two minutes.
First, the trajectory of the bird was defined using the absolute map-
ping. Then, the user animated the wings with the trajectory-relative
mapping. The camera was attached to the bird trajectory, allowing
the user to animate while flying with the bird. This view was useful
when the bird was difficult to animate from a static view.

We animated a kangaroo jumping in a zig-zag pattern using sev-
eral interaction paradigms. The animation consisted of six layers
and was produced in twenty minutes. The animator used the ab-
solute mapping to sketch the trajectory of the kangaroo in a jump-
ing zig-zag pattern, as shown in Figure 1. In the second layer, the
animator bent the legs for the jumping motion. A table was used
as a reference for the ground plane. The iterative process contin-
ued with the tail, arms, and head. The torso was modified using
the additive mapping to add anticipation and follow-through to the
jumping. Figure 3 shows the final kangaroo motion. This pipeline
is typical of how a user would animate a character with our system.

The spider animation also consisted of six layers and was created
in twenty minutes. Again, the user started by defining the trajectory
with the absolute mapping. Next, two of the legs were animated si-
multaneously with two widgets. The rest of the legs were animated
in a similar manner. The choice of what legs to animate together
was left to the user, and there was no restriction on the number of
legs animated at once. Finally, the animator added head motion
using the trajectory-relative mapping to give the spider more per-
sonality. Using the additive mapping, the animator added bounce
and sway to the torso of the spider while still maintaining the walk
cycle. The spider animation shows how our system can be used
to create complex motion efficiently. The animator performed the
motion of all eight legs with just two widgets, but her variability in
step size and timing produced an appealing spider walk (Figure 4).

Explicit Editing Using our explicit editing technique, the user
can also edit previously captured motion data. Using a motion-
capture sequence of a broad jump, the animator exaggerated the
jump and added a back flip. Both transformations were done in just
one motion, taking under a minute to edit.

We also edited a two-character boxing scenario that required
synchronizing two unrelated motion-capture sequences. The
twelve-second animation consisted of three layers and was com-
pleted after five minutes. The animation sequence started with one
boxer punching and the other bouncing in place. The animator
edited the bouncing boxer to react to the punches of the other. In
the first layer, the user added torso motion for absorbing stomach

6



Published in ACM Transactions on Graphics (SIGGRAPH 2003)

Figure 5: Top: The animator mimics the arm swing of the walking motion. Bottom: He edits by bending his elbow. The system infers that
the user is controlling both arms of the character with just one arm. The motion is changed to make both arms swing with bent elbows.

punches. Next, the user made the boxer’s head react to the hits. Fi-
nally, the hips were pulled back to make the stomach punches more
realistic. This animation showed us how easily and effectively an
animator can edit animations that require timing adjustments.

Implicit Editing We used the implicit editing technique to
change the style of arm swinging in a walk sequence. First, the
animator mimicked the motion seen on the screen by swinging his
right arm. Then, he performed the motion differently, bending the
elbow (Figure 5). The system discovered the mappings from the
widget to the character’s left and right arms and remapped the arms
accordingly. The user input was treated as only 2-d because the
subspace algorithm deemed the third dimension inconsequential.

We edited the world position and orientation of a character in a
broad jump and a spinning jump sequence. The system mapped the
user input to the character’s left foot in the world frame. The feet
were pinned, and the edits preserved these constraints by transform-
ing them both in space and in time. The system calculated time-
warps between the user mimic and the character features, as well
as the user edit and the user mimic, to align the semantics of all the
motions. Although the timing of the jumps changed, characteristics
such as the arm swings were timewarped to preserve the semantics.
In the spinning jump edit, the animator changed the direction of the
character spin. With just one widget, the animator simultaneously
controlled both translation and orientation, six DOFs, with ease.

We also edited the spider walk described above. The animator
mimicked one leg with respect to the spider body. The system dis-
covered that the animator controlled not just one leg, but all legs by
determining the phase shifts relating the leg motions. In this exam-
ple, the leg movement had enough error that the system reverted to
directly solving for Y ′ from X ′ rather than using X ′−S (T (X)).
The mimic and edit were only 1-d, but the nullspaces of the spi-
der’s leg features reproduced the remaining two dimensions of the
original spider motion. The legs were remapped using the detected
phase shifts, enabling the animator to preserve the gait of the spider
but reanimate all legs by just editing one.

Informal Experiences with Users A professional and novice
animator tested the system we have described. The results and feed-
back were exciting and generated interesting discussions.

The professional animator was eager to try our system. Although
he was a classical animator, he had used motion capture prior to our
session and was comfortable with the technology. His main concern
with the system was the lack of precision it provided compared to
more traditional tools. He was excited, however, about the possi-
bility of using our system for the initial staging, directing, and pro-
totyping of the desired motion. The imprecision and fluidity of the
system made these initial tasks of positioning and generating rough
trajectories simpler than using a system that always demands exact-
ness. He had similar positive remarks about roughing out camera
positions and camera moves through a scene.

The novice animator had no prior animation experience of any
kind, but found it intuitive to act the desired behavior. She had little
trouble making a mental mapping between her physical surround-
ings and the virtual scene. However, she found it difficult to slow
down and adjust her acting to slower motion on the screen. Un-
like the author, who likes to animate at slow playback speeds to
ensure control over the character, the novice was more comfortable
animating at close to real-time speed. After a forty-minute intro-
duction to the system, she took twenty minutes to produce a fairly
successful, although stylized, spider walk, seen in the video.

We had other users interact with the system, and their experi-
ences suggest that acting is an easy-to-learn interface for anima-
tion. In a production setting, the ability to sketch rough character
and camera paths quickly can make the initial stages of storyboard-
ing and staging faster. Directors often have trouble directing virtual
scenes because it is difficult to move the camera interactively. Us-
ing our system, these tasks become faster and more natural.

8 Discussion and Future Work

We had several goals in mind when designing our system. We imag-
ined an easy-to-use system that would also grant the animator great
control. The system would require little training and would allow
the user to create motions with personality. Some of our goals were
conflicting; generally, one sacrifices control for the expert by mak-
ing the system approachable for the beginner. As the initial users,
we often felt this conflict when making decisions in designing and
using the system. It was encouraging, however, that a novice could
create an interesting animation sequence after very little experience
with the system. We were pleased that the system could offer ben-
efits, albeit of a different sort, to the professional.

Many questions remain on how we could improve the system.
Currently, the animator uses a wireless mouse on buttons and sliders
to control speed, motion-editing sections, camera view, and charac-
ter selection. These operations often slow down users and distract
them from interacting with the virtual scene. We hope to mini-
mize mouse interaction to keep the user interface within the acting
paradigm. Animations requiring interactions with physical objects,
such as the ground, proved more difficult because of the tug-of-war
between satisfying constraints and giving the user complete control.
The system as it stands is tailored neither for the absolute beginner
nor for the expert; we expect that further customization for either
purpose would increase the applicability of our framework.

We found that animating complex motions required longer train-
ing and greater animation skills. As an example, we attempted an-
imating a quadruped (dog) walk, and although the leg motion was
constrained and the paws were not sliding on the floor, the walk
did not exhibit the required physical likeness that is necessary for
a good dog animation. Creating such an animation requires more
training on how to make a quadruped look expressive and realistic.

7



Published in ACM Transactions on Graphics (SIGGRAPH 2003)

Editing through inferring mappings still presents many open
questions. The initial system we have presented for editing works
well in many cases. However, we feel we have presented as much
an open problem as a complete set of solutions. We tried to make
as few assumptions as possible yet still had to require that edits
preserve the semantics of the motion.

Distilling the large set of possible mappings to the essence of
what the animator wants continues to be a hard problem. Whereas
CCA degrades smoothly, distilling degrades discretely. The use of
thresholds makes the problem less stable than it should be. We are
working towards overcoming these issues while also expanding the
system’s capabilities. Although the mappings explored so far were
from motion to motion, we plan to investigate higher derivatives
or frequencies [Pullen and Bregler 2000]. Moving the other way,
we plan to explore whether imposing simple constraints such as
always mapping y-up to y-up would provide more stability without
imposing too much on the user’s sense of freedom. We also want
to leverage that sometimes the system does something reasonable
but not what was intended; e.g. with features X(t) = sin(t) and
Y (t) = −sin(t), both Y (t) = −X(t) and Y (t) = X(t −π) are valid.

The reader may have wondered why we would design a system
for novices that requires an expensive motion capture system. Al-
though our approach currently relies on a full motion-capture stu-
dio, this machinery is not essential for our system. To capture six
DOFs, one can use a data glove, stereo vision, or any other motion
capture device [Oore et al. 2002]. We feel that it is reasonably likely
for cheap 3-d input devices to become available in the near future.

Acknowledgements We thank David Hunt, Maya Rodrig, and
Steve Capell for spending time with the system and providing us
with valuable feedback. Special thanks go to Emre Yilmaz and
Michael Cohen for the invaluable discussions on existing work and
future ideas. We also thank Michael Cohen for helping us with
the text. We thank Karen Liu and Keith Grochow for mocap data
and Eugene Hsu for real-time IK. We thank Werner Stuetzle for
suggesting a statistical approach to implicit mapping. Funding and
research facilities were provided by the UW Animation Research
Labs, NSF grants CCR-0092970 and EIA-0121326, two NSF grad-
uate research fellowships, and gifts from EA, Sony, and MSR.

A Quaternions and Affine Transformations

To operate on orientations, we need them in a Euclidean space, the log map of quater-
nions. We also use the map to smooth orientations [Lee and Shin 2002], which are
noisy. Note how rotations and scales in R3 map to quaternions by the exp map. Scaling
changes twist but not the axis of rotation; rotating changes the axis but not the twist.

B CCA

Canonical Correlation Analysis finds transformations A and B such that the correlation
of transformed, zero-meaned features A>X and B>Y is maximized:

argmax
A,B

A>ΣXY B
(A>ΣXX AB>ΣYY B)1/2 ,

where ΣXX , ΣYY , and ΣXY are the co- and cross-variances. CCA can be posed as a
generalized eigenvalue problem to find A and B quickly [Mardia et al. 2000].

[S,Λ] = eig
(

Σ−1
XX ΣXY Σ−1

YY Σ>
XY

)

A = S, B = Σ−1
YY Σ>

XY A

C Timewarping

The system extracts positional constraints from the user’s initial motion and the user’s
editing motion. These constraints are intervals in time when the user feature is still. Be-
cause the user is not changing the semantics of the motion, there are the same number
of constraints in both of the user’s motions. We solve for a piecewise-linear timewarp
that exactly aligns the endpoints of the constraint intervals and minimizes an objective.

The motivation for the objective is that in an attempt to faithfully reproduce a fea-
ture of the original motion, the user may have errors both in space (the user twitched)
and in time (the user lagged or anticipated). We make the assumption that temporal er-
rors are low frequency, so by using a sparse number of control points in the timewarp,
we minimize our interference with the spatial component of the motion. We select
a small number of control points ti by analyzing the speed of the feature curve. We
choose “peaks,” local maxima that are a standard deviation above their surroundings.
We want to find the best timewarp consisting of these control points that minimizes
the error between the two features. The error is defined piecewise (as edges), and the
problem can be formulated as a shortest-path problem for an efficient global solution.
We optimize Ti such that the control points ti → Ti minimize the error

E =
n−1

∑
i=0

∫ Ti+1

Ti

∣

∣

∣

∣

u
(

(Ti+1 −T )ti +(T −Ti)ti+1

Ti+1 −Ti

)

− v(T )

∣

∣

∣

∣

2

dT,

where u and v are the spatially aligned, dominant subspaces of the two features. Be-
cause the curves are sampled, one must evaluate E with care to avoid aliasing.

References

BENQUEY, V., AND JUPPE, L. 1997. The use of real-time performance animation in
the production process. In ACM SIGGRAPH 97: Course Notes.

BORCHERS, J. O., SAMMINGER, W., AND M UHL AUSER, M. 2001. Conducting a
realistic electronic orchestra. In ACM UIST 2001.

DE GRAF, B., AND YILMAZ, E. 1999. Puppetology: Science or cult? Animation
World 3, 11.

DE GRAF, B. 1989. Notes on human facial animation. In ACM SIGGRAPH 89:
Course Notes.

DONALD, B. R., AND HENLE, F. 2000. Using haptic vector fields for animation
motion control. In Proceedings of IEEE Int. Conf. on Robotics and Automation.

GILDFIND, A., GIGANTE, M. A., AND AL-QAIMARI, G. 2000. Evolving perfor-
mance control systems for digital puppetry. The Journal of Visualization and Com-
puter Animation 11, 4, 169–183.

IGARASHI, T., MATSUOKA, S., AND TANAKA, H. 1999. Teddy: A sketching inter-
face for 3d freeform design. Proceedings of SIGGRAPH 99, 409–416.

JOHNSON, M. P., WILSON, A., KLINE, C., BLUMBERG, B., AND BOBICK, A. 1999.
Sympathetic interfaces: Using a plush toy to direct synthetic characters. In Pro-
ceedings of CHI, 152–158.

LASZLO, J., VAN DE PANNE, M., AND FIUME, E. L. 2000. Interactive control for
physically-based animation. Proceedings of SIGGRAPH 2000, 201–208.

LEE, J., AND SHIN, S. Y. 2002. General construction of time-domain filters for
orientation data. IEEE Transactions on Visualization and Computer Graphics 8, 2,
119–128.

MARDIA, K. V., KENT, J. T., AND BIBBY, J. M. 2000. Multivariate Analysis.
Academic Press.

OORE, S., TERZOPOULOS, D., AND HINTON, G. 2002. Local physical models for
interactive character animation. Computer Graphics Forum 21, 3, 337–346.

PERLIN, K. 1995. Real time responsive animation with personality. IEEE Transac-
tions on Visualization and Computer Graphics 1, 1, 5–15.

POPOVIĆ, Z., AND WITKIN, A. P. 1999. Physically based motion transformation.
Proceedings of SIGGRAPH 99, 11–20.

POPOVIĆ, J., SEITZ, S. M., ERDMANN, M., POPOVIĆ, Z., AND WITKIN, A. P.
2000. Interactive manipulation of rigid body simulations. Proceedings of SIG-
GRAPH 2000, 209–218.

PULLEN, K., AND BREGLER, C. 2000. Animating by multi-level sampling. Computer
Animation 2000, 36–42.

RAMSAY, J. O., AND SILVERMAN, B. W. 1997. Functional Data Analysis. Springer.

SCHKOLNE, S., PRUETT, M., AND SCHRÖDER, P. 2001. Surface drawing: Creating
organic 3d shapes with the hand and tangible tools. In Proceedings of CHI 2001,
261–268.

SHIN, H. J., LEE, J., GLEICHER, M., AND SHIN, S. Y. 2001. Computer puppetry:
An importance-based approach. ACM Transactions on Graphics 20, 2, 67–94.

SNIBBE, S., AND LEVIN, G. 2000. Interactive dynamic abstraction. In Proceedings
of NPAR, 21–29.

STURMAN, D. J. 1998. Computer puppetry. Computer Graphics and Applications
18, 1, 38–45.

WALTERS, G. 1989. The story of waldo c.graphic. In ACM SIGGRAPH 89: Course
Notes.

8


