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ABSTRACT
Analysis of gameplay data is crucial for evaluating design de-
cisions and refining a game experience. However, identifying
player strategies and finding areas of confusion is difficult be-
cause a designer may not know what queries to ask or what
patterns to look for in the data. To make this task easier,
we present Playtracer, a method for visually analyzing play
traces that is independent of a specific game’s structure.
Playtracer applies multidimensional scaling to cluster play-
ers and game states, providing a detailed visual representa-
tion of the paths the players take through a game. We eval-
uate our method by analyzing an educational puzzle game
and highlighting common hypotheses, pitfalls, confusing el-
ements, and anomalies. Our results suggest that Playtracer
can be an effective tool for game analysis and improvement.

Categories and Subject Descriptors
K.8.0 [Personal Computing]: General – Games

Keywords
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1. INTRODUCTION
Analysis of gameplay data is an important component of
the game design process. Playtesting helps game designers
know what players are doing in the game and whether or not
this behavior is expected [9]. These insights help game de-
signers evaluate design decisions and iteratively improve the
game. However, thorough evaluation of a game’s structure
is challenging because it often requires finding patterns in
high-dimensional data from many players. Game companies
spend a lot of time and money on playtesting, resulting in a
need for data analysis methods that are efficient, powerful,
and easy to use.

Recently, methods for automatic logging and game instru-
mentation have seen a surge in popularity [16]. These meth-
ods have made it feasible to collect detailed gameplay data
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from many players, and conduct quantitative and empiri-
cal analyses of this data. Examples of statistical analysis of
gameplay include heat maps [1, 19] and quantitative visual-
izations coupled with video [16]. These techniques are useful
for providing answers to specific queries the designers might
have, such as determining the causes of death in a level of a
first-person shooter game.

Most games encourage the player to acquire certain skills
that are necessary to play the game. In order to evaluate
whether or not players are mastering these concepts, it is
crucial to classify the strategies that players are trying. Fur-
thermore, it is important to examine when and how players
become confused. Ideally, when players encounter a new
concept, they will struggle with it for a bit before mastering
it and moving forwards. Of particular interest to designers
of educational games, confusion has been shown to be an
important step along the path to deep learning [4]. How-
ever, only certain types of confusion are useful for learning.
Confusion due to poor game design or unintuitive elements
is problematic. Since game designers may not know what
patterns to look for, it can be difficult to formulate queries
to examine confusion and player strategies.

We present a new tool for exploring how large groups of
players move through the space of a game. In games where
the player moves through a virtual environment, it is often
possible to visualize players’ gameplay in relation to the en-
vironment itself. In many other kinds of games, however,
player movement through the game space is abstract and
must be shown in a more general way. In this paper, we
attempt to visualize transitions through game states in a
manner that is independent of the structure of the game
itself. To do this, we apply Classical Multidimensional Scal-
ing [3, 17] to project any game space onto two dimensions,
giving a detailed view of how a group of players approach
a particular level. Our tool, Playtracer, helps to show the
common ways that players succeed and fail, identify pitfalls
and anomalies, and track how a particular player progresses
through multiple levels. We provide a simple interface to al-
low the user to adapt the visualization to explore the game
space in detail. We evaluated Playtracer by using it to ana-
lyze an educational game that we developed, Space Rescue.
We were able to identify common points of confusion in our
game quickly and easily, and we also saw some unexpected
approaches to puzzles. These results suggest that our tool
should be useful for iterative game development and refine-
ment.



2. RELATED WORK
Game designers have long employed playtesters for the pur-
pose of game refinement [9]. Traditional methods include
observational studies of players [10], videotaping players,
asking players to talk out loud while they are playing, and
question-and-answer sessions [1]. These commonly used meth-
ods provide insight into how players react to the game and
high-level information on the strengths and weaknesses of a
particular level. Although direct interaction with playtesters
provides useful information, these methods suffer from a few
key limitations. First, players may not be able to articulate
their impressions accurately and may ignore important de-
sign flaws, resulting in incomplete data. Second, since the
designers must spend time interviewing each playtester indi-
vidually, the time required to execute these kinds of playtests
does not scale well to large groups of playtesters.

In order to gather data from large numbers of players, and
conduct empirical analyses of this data, game designers and
researchers have experimented with statistical techniques.
Such approaches include that of Kennerly [15], who explains
how game designers can apply data mining to analyze how
players in an MMORPG acquire experience. Ducheneaut
et al. [8] track 220,000 World of Warcraft players in order
to gather statistics about how many hours players spend in
the game and how quickly they advance in level. Tychsen
et al. [22] suggest recording game metrics to identify differ-
ent play-styles and play-personas. DeRosa [5] describes how
BioWare used statistics on playtesters in order to examine
where players spend time and what special powers they use.
Romero [19] studies how players improve through repeated
attempts in the racing game Forza Motorsport 2. Drachen et
al. [7] use emergent self-organizing maps to identify player
types in Tomb Raider: Underworld. Statistical techniques
can provide useful information, but they are typically de-
signed to answer a specific query, and may be difficult to
interpret.

Another method of gathering user data in the field of Human-
Computer Interaction is to collect and analyze user interface
events captured during interaction with a system [11]. One
system that builds on and extends this model is Microsoft’s
TRUE system [16], which combines extensive behavioral in-
strumentation with attitudinal, demographic, and contex-
tual data. Designers can formulate queries to extract infor-
mation from this data and visualize their results alongside
video playback of important points. This methodology can
provide valuable insight into why users behave in the way
that is observed. Our work expands on this method by pro-
viding tools to explore user behavior without asking specific
queries, allowing designers to discover patterns they may not
have thought to look for.

Current data mining approaches generally condense play in-
formation into characteristics or features, which are then an-
alyzed for patterns. This works best when the designer has
specific questions that the data can answer. It is more diffi-
cult to formulate queries when one is not sure what patterns
are in the data. For example, it is difficult to detect player
confusion by looking at game metrics, even when it would
be obvious by watching a video of the gameplay. Humans
are good at recognizing these kinds of patterns visually, and
so it is easier to identify complex patterns by including a

person in the analysis [13]. This is the premise of visual
data mining, which has been been applied to many kinds of
data [14]. It is particularly useful when one does not know
beforehand what patterns one will find, such as in games.

Visual data mining has been applied before to analyze game
player data. While developing Halo 3, Bungie and Microsoft
used heat maps to determine common places of player death
in order to find the most difficult parts of a level [21, 19].
This data was used to modify the topography of the envi-
ronment and strength of enemies in order to minimize un-
fairness and frustration. Chittaro et al. [2] use heatmaps
that track what players look at and where they spend their
time in order to identify poor environment layout and player
personalities. Others have attempted to show movement
through a virtual environment to analyze the flow of battle
[12], identify basic player behaviors [6], and find landmarks
with multidimensional scaling [20]. All of these methods
make use of the fact that the player is present in a virtual
environment. To generalize to a broader class of games, we
propose a visual tool suitable for any game with a concept
of state.

3. PLAYTRACER
A natural way to think of player movement in arbitrary
games is the path they take between different game states.
A play trace is then a path that a player takes in this high-
dimensional game state space. In order to visualize these
paths, we use Classical Multidimensional Scaling (CMDS)
[3, 17] to represent observed game states in two dimensions.
CMDS takes an input matrix that specifies the distance be-
tween every pair of states and outputs a set of points, which
are positioned to minimize a loss function on all interpoint
distances. Therefore, the transformation will place states
that are similar close together and states that are dissimilar
far apart, making it easy to see the similarity of states that
are visited by many players. We used the MDSJ library for
Java [18].

Different metrics for calculating distances between states
will result in different configurations of points after CMDS is
applied. In general, the distance metric should be different
depending on the type of game. Additionally, the distance
metric can be adjusted depending on what features of the
game the designer wishes to analyze or what features he
or she wants the state graph to have. For example, if the
distance metric has a component that compares how many
steps it takes to reach a goal state, then it will naturally
cause goal states to cluster together. States from which it
is difficult to reach a goal state will appear far away. This
allows the designer to identify players who are not making
progress and investigate why they are having trouble.

An example of Playtracer’s output can be seen in Figure 1,
which shows the state space for one level of an educational
game we have been developing. Playtracer takes in a list of
all of the states that the player visited and a distance metric
that calculates the distance between states, and creates a
graph where the states are vertices and player movements
are directed edges. Here, the yellow state is the start state
and the green state is the goal state. To identify which states
are most commonly visited, the size of a state is proportional
to how many players reach that state.



Figure 1: State visualization: Circles are game
states; their size is proportional to how many play-
ers reach that state. Player paths between states
are edges. Classical Multidimensional Scaling is ap-
plied to reduce game states to two dimensions and
cause similar states to be drawn close together. The
yellow vertex is the start state and green vertices
are goal states.

Figure 2: An alternative color scheme. Blue and
red lines represent moves made by players that won
and lost, respectively. States are shaded between
blue and red depending on the probability that a
player who reached that state completed the level
successfully.

Figure 3: Viewing just winners (left) and losers
(right) from the same state graph. Comparing these
visualizations can show if winners and losers behave
similarly.

Figure 4: Viewing a cycle in the game state graph.
Cycles correspond to failed hypotheses, as players
make a move but return to where they started.

One useful way to analyze games is to find areas where a
large proportion of players fail. If 90% of players who reach
a similar set of states give up, then the designer should focus
his or her attention on those states and the paths leading
to it. To this end, Playtracer has an alternate color scheme,
shown in Figure 2. Several players gave up on one or more
attempts and are represented in red. Players that finished,
on the other hand, are represented in blue. In addition,
states are colored to reflect the probability that a player
who ended up in that state went on to finish the level; bluer
states are ones mostly visited by winning players, while red-
der states are ones mostly visited by losing players. Large
red-hued states are of particular interest as they represent
states visited by many people who mostly failed.

We include two additional features that might prove useful.
One is to view only players that won or only players that
lost in order to quickly see the differences between them, as
shown in Figure 3. The second feature is that we can easily
identify path cycles and show or hide them at will. Cy-
cles, like in Figure 4, represent failed player hypotheses: the
player started at a state, then went to several other states
before returning. Viewing only cycles shows common ideas
that players tried but later decided against, providing insight
into how players think about the game strategy. Stripping
cycles from the displayed paths, on the other hand, reveals
the backbone of the path the player took to his or her final
state; in essence, it is the last approach that players decided
upon for that level.



Figure 5: The educational game Space Rescue. The
goal is to split lasers into fractional pieces and redi-
rect them to satisfy targets scattered on the screen.
The game teaches the player about partitions of a
whole and fractional division.

4. EVALUATION
In this section we describe the results of applying our method
to a game.

4.1 Space Rescue
We evaluated our tool on Space Rescue, an educational game
that we designed to teach fractions. This is a grid-based
puzzle game in which players must split and redirect lasers
to targets. In order to reach the targets, the player must
correctly place a variety of pieces onto the grid; some of
these pieces redirect lasers and others split lasers equally
into two or three smaller lasers. All of the pieces have an
entrance, indicated by a large funnel, and one or more exits,
indicated by smaller nozzles. Targets also have entrances,
indicated by a gray tube, as well as a label identifying what
fraction of the original laser they require. The game ends
when all of the targets have been satisfied. An example of a
level of this game can be seen in Figure 5.

In order to visualize players’ moves as they attempt to solve
puzzles, we define the game state for Space Rescue to be a
set of tuples with the form: (piece, piece coordinate), with
any missing piece assumed to be in the side container. The
distance metric has two equally weighted components: the
number of piece pickups or placements required to change
one state into the other, and the number of piece pickups
or placements required to reach any observed goal state.
This metric produces a visualization that shows paths to
the goal as explained in Figure 6. Applying CMDS then
causes states that contain the same piece in the same grid
location to cluster. It has a similar effect on states which
are the same number of actions away from a goal state.

4.2 Analysis of Space Rescue
4.2.1 Level 2

We begin our analysis with level 2 of Space Rescue, seen in
Figure 7(a) and solved in Figure 7(b). This level requires the
player to place two pieces to redirect the laser to the target.
There are multiple solutions because the pieces can be placed
in any of the right three columns as long as they align with

(a) Incorrect target entrance

(b) Incorrect piece entrance

Figure 8: Two clusters in level 2, and their corre-
sponding game states in Space Rescue. They are no-
table in the visualization as they lie farther from the
goal states and include many players. They repre-
sent common classes of mistakes made on this level.

each other and are in the correct rows. The CMDS visual-
ization of this level can be seen in Figure 7(c). 35 play traces
are shown for this level. A glance at 7(c) shows that many of
the players (19 out of 35) went through a state on the lower
left that is further away from the goal states. This state is
shown in the visualization and the game in Figure 8. Many
players tried to hit the target from the top, even though a
tutorial message explained that the laser must hit the target
from the right-hand side. Further evaluation is necessary to
determine why players are becoming confused here, which
could be due to poor level design, ambiguous art, unclear
tutorials, or simply that restricting the entrances of the tar-
gets is a difficult game mechanic that takes several levels to
learn.

A cluster of points can be seen in the upper left of Fig-
ure 8(b). Examination of these states shows that roughly
20% of the players tried to place a piece with the entrance
in the wrong place into the path of the laser, blocking the
laser. The presence of this cluster could be evidence that the
artwork for the pieces is unclear or that this game mechanic
is not explained adequately. We show these two examples
in order to highlight how a game designer can use our tool
to look for clusters or large states in order to locate areas of
possible confusion quickly.

4.2.2 Level 4
The fourth level of Space Rescue is shown in Figure 9(a).
This is the first level to require both splitting and redirecting
the laser, as shown in Figure 9(b). The CMDS visualization
is shown in Figure 9(c). The presence of many red arrows



(a) Inter-state distance only (b) Distance to goal only (c) Weighting both inter-state
distance and distance to the goal
equally

Figure 6: Weighting between distance metrics. 6(a) shows the result of using distances between states as
a distance metric. This shows the true distances between states, but makes it difficult to see how players
approach the goal states. Using only the distance from the goal as in 6(b) produces a straight line, but
combining both metrics as in 6(c) yields a graph that shows paths towards and away from the goal. Combining
these metrics seems the most useful for exploring how players move through the space of the game.

(a) Level 2 (b) One solution (c) Visualization

Figure 7: Level 2 of Space Rescue. Players must bend the laser twice because the target’s entrance is on the
right-hand side. The visualization in 7(c) calls attention to two clusters in the upper left and lower left that
are further away from the goal than the start state. These clusters are examined further in Figure 8 and are
shown to be examples of player confusion.

.

(a) Level 4 (b) Solution (c) Visualization

Figure 9: Level 4 of Space Rescue. This level requires both splitting the laser into halves and bending them
to the targets. Even though this level only requires the user to manipulate three pieces, the state space in
9(c) is cluttered, indicating that players tried many different combinations of pieces. The red arrows indicate
that several players failed. The visualization shows clusters in the upper left, middle left, lower left, and
lower right that are examined further in Figure 10 and are shown to represent player strategies.



indicates that several players failed this level. However, the
red and blue arrows are mixed together, indicating that both
successful and unsuccessful players followed similar paths.
Despite the fact that this level only has three pieces, the
state space is quite cluttered, indicating that players tried
many different combinations of pieces. This suggests that
this level may have been particularly confusing.

We can also see three major clusters on the left-hand side of
Figure 9(c). These clusters are further away from the goal
than the start state, indicating that the players moved away
from the solution to reach them. A fourth major cluster
can be seen in the lower right, on the path to the goal. An
example of a state from each of these clusters can be seen in
Figure 10. Clusters 10(a), 10(b), and 10(d) represent logical
hypotheses. Of these hypotheses, 10(a) and 10(b) are incor-
rect, but 10(d) is correct and is along the most commonly-
taken path to the goal. Cluster 10(c), on the other hand,
is a collection of states where pieces have been placed with
no effect on the lasers. Even in this more complex example,
our visualization is able to draw the user’s attention to these
clusters, providing clues as to why players seemed to strug-
gle with this level. Furthermore, this example shows how
our tool can be used to discover common player strategies.

Figure 11 shows a visualization of the same level with the
states colored based on the probability of losing after enter-
ing that state. Looking at this view, one can see a reddish-
colored state that is close to the goal. Examination of this
state shows that the two elbow pieces are in the correct place
but the splitter has not yet been placed. Even though this
state is a single move away from victory, most of the players
who entered this state eventually failed. This example is
further evidence that this level might have been confusing
and premature. Most likely, the level should be simplified
so only one bend is required, and the laser and targets are
closer together. This state is an example of the kinds of
anomalies our system can help a game designer detect.

4.2.3 Level 5
Level 5 (Figure 12(a)) requires the player to rotate a laser
counterclockwise to reach the target, but is only given three
pieces that all rotate the laser clockwise. Therefore, the
player must place all three of these pieces so that the laser
bends all the way around. From the visualization (Fig-
ure 12(c)) we can see that roughly 20% of the players go into
the cluster visible in the upper left. This cluster corresponds
to game states where the player incorrectly tries to use
a clockwise-rotating piece as a counter-clockwise-rotating
piece, even though the pieces cannot function in this way
(Figure 13). Our visualization quickly draws attention to
this area of confusion. In fact, the visualization shows that
players do not make the same mistake with the other incor-
rect piece. One possibility is that the laser does not show
direction clearly enough, so that players cannot tell if it is
traveling from bottom to top or top to bottom: in that case,
placing a piece that accepts the laser from above would be
logical. The other possibility is that players care about the
piece’s exit direction and not its entrance direction. The tar-
get is to the left, so a player’s instinct may be to place the
piece that points left. In either case, using Playtracer reveals
a cluster of similar problem states that the game designer
can investigate further through traditional playtesting.

(a)

(b)

(c)

(d)

Figure 10: Some interesting clusters in level 4. 10(a)
is a greedy strategy that satisfies one target but
makes the other impossible to satisfy. 10(b) is a
strategy that tries to direct the full laser near the
targets. 10(c) is one of a set of states of complete
confusion, where no piece does anything. 10(d) is
a correct move. These clusters provide insight into
player strategies.



(a) Level 5 (b) One solution (c) Visualization

Figure 12: Level 5 of the educational game Space Rescue. The goal of this level is to rotate the laser clockwise
three times. The cluster in the upper left of 12(c) is examined further in Figure 13 and is shown to represent
a state of confusion where players try to turn the laser counterclockwise instead of clockwise.

Figure 11: A deadly state in level 4. The red shading
on this state indicates that most players who enter
it eventually give up. Strikingly, the level is close to
the goal - only one more move is required to win -
but no player found the winning move. It is likely
that this level is presented too early, as players still
struggle with the spatial aspects of the game.

Figure 13: The main cluster of confusion in level
5 and the class of states it represents. The piece
cannot be used in this way; the players most likely
cannot judge the direction of the laser or are ignor-
ing which side is the piece’s entrance.

Figure 14: A single player tracked across multiple
levels (3, 5, 8, 9). The player completes levels 5 and
8 easily, but struggles with 3 and 9, suggesting that
the level ordering is not optimal. Closer examina-
tion shows that 3 and 9 require both splitting and
bending, while the intervening levels require only
one or the other; for this player, difficulty may come
from combining both mechanics.

4.2.4 Multiple levels
When only viewing a single level, it is not always clear what
a particular player is thinking. We can use Playtracer to
track a single player or multiple players across several lev-
els, giving a long-term view of how players play the game.
Figure 14 shows an example of a player who stood out be-
cause he made many unnecessary moves in the earlier levels.
Viewing his play traces, we can see that he quickly completes
levels 5 and 8 but stumbles on levels 3 and 9. Taking into
account the configurations of these levels, we can hypothe-
size about his behavior. A likely possibility is that he can
solve levels that require only splitting or only redirecting
lasers, but has difficulties when these game mechanics are
combined. By comparing graphs from different levels, the
game designer can reason about what players find difficult
and adjust the game to maintain a steady difficulty progres-
sion.



5. LIMITATIONS AND FUTURE WORK
The usefulness of the visualization is highly dependent upon
the chosen state distance metric. This provides some flexi-
bility because game designers can examine different aspects
of a game by varying this metric. However, poor metrics
will not provide accurate visualizations, and some games
are hard to design distance metrics for. For example, in a
first-person shooter, a player with a rocket launcher might
have an advantage over a player with a pistol, but it is not
clear exactly how far apart they are in the game’s state
space. Another limitation of Playtracer is that the visual-
ization tends to become cluttered as states and transitions
increase. In these cases, traditional methods and statisti-
cal tools may be more effective. One area of future work is
to make the visualization more manageable and robust by
clustering similar states and paths and removing outliers.
A second area of future work is to evaluate when game de-
signers would prefer the state projection approach and to
classify the games for which it is the most effective.

We plan to extend Playtracer in two additional ways. First,
we hope to aid in the exploration of temporal patterns that
are embedded in play data. For example, a game designer
may want to observe patterns in the times at which players
reach a particular state in the game. Our current system
is primarily intended for viewing spatial relationships be-
tween game states and is unable to support visualization for
temporal queries. This could be accomplished by adding a
third dimension to the display and is an area of future work.
Second, we believe that Playtracer could be useful for eval-
uating prototypes in iterative game design and refinement.
We hope to explore the potential for using our tool to iden-
tify a weak point, fix the component, redeploy the game,
and then show clearly that the weakness has been removed.

6. CONCLUSION
We have presented a way to project game states for game-
play visualization that helps a designer view how large groups
of players move through a game. Our method visualizes
game traces in a way that is independent of a game’s struc-
ture as long as the distance metric between states is appro-
priate. We showed how this method can be used to analyze
a game, highlight areas of confusion, provide insight into
players’ strategies, and identify portions of the game that
need refinement. We have provided some initial insight into
how to specify the distances between game states in order
to maximize the usefulness for visual data mining, but more
exploration is needed. Furthermore, we have only scratched
the surface of how to use patterns of state transitions to
differentiate between types of confusion and classify player
strategies, and this remains a major problem to be solved.
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