Motivation

Where is my W-2 Form?

Video-based Tracking

Overhead video camera

Camera view of the desk

Example

40 minutes, 1024x768 @ 15 fps

Input Video

User

User

Vision Engine

Query Interface

Query Interface

User

Vision Engine

Event

. . .

Assumptions

• Simplifying

Corresponding electronic copy exists

Assumptions

- Simplifying
 - Corresponding electronic copy exists
 - 3 event types: move/entry/exit
 - One document at a time
 - Only topmost document can move
 - No duplicate copies of same document

Assumptions

- Simplifying
 - Corresponding electronic copy exists
 - 3 event types: move/entry/exit
 - One document at a time
 - Only topmost document can move
 - No duplicate copies of same document
- Other
 - Desk need not be initially empty

Input Frames

Event Detection

Event Interpretation

Document Recognition

Event Interpretation

Document Recognition

Document Recognition

before

after

before

after

Move

before

after

Move

Entry

before

after

Move

Entry

Exit

before

after

Move

Motion: (x,y,θ)

Exit

- Use SIFT [Lowe 99]
 - Scale Invariant Feature Transform
 - Distinctive feature descriptor
 - Reliable object recognition

Move vs. Entry/Exit

after

before

after

before

after

after

after

before

before

before

before

before

Motion: (x,y,θ)

after

Example 1 (entry)

before

Example 1 (entry)

before

Example 1 (entry)

after

before

File1.pdf File2.pdf File3.pdf File4.pdf File5.pdf File6.pdf

after

before

Example 2 (entry)

before

after

before

after

after

before

after

before

after

after

Algorithm Overview

Document Recognition

• Match against PDF image database

Document Recognition

• Match against PDF image database

- Performance
 - Can differentiate between ~100 (or more) documents
 - ~200x300 pixels per document for reliable match

Algorithm Overview

Motion: (x,y,θ)

before

Motion: (x,y,θ)

before

Motion: (x,y,θ)

before

Motion: (x,y,θ)

before

Motion: (x,y,θ)

before

Photo Sorting Example

Current Directions

- Handle more realistic desktops
- Speed up processing time
- Other useful functionalities
 - Written annotation
 - Version management
 - Bookmark
 - Multi-user queries

For More Information

• Our publications

- Jiwon Kim, Steven M. Seitz, Maneesh Agrawala. The Office of the Past. *IEEE Workshop on Real-time Vision for HCI*, 2004.
- Jiwon Kim, Steven M. Seitz, Maneesh Agrawala. Video-based Document Tracking: Unifying Your Physical and Electronic Desktops. To appear in *Proceedings of UIST*, 2004.

• Other related work

- David G. Lowe. Distinctive image features from scale invariant keypoints. *International Journal of Computer Vision*, 2004.
- Pierre Wellner. Interacting with paper on the DigitalDesk.
 Communications of the ACM, 36(7):86.97,1993.
- D. Rus and P. deSantis. The self-organizing desk. In Proceedings of International Joint Conference on Artificial Intelligence, 1997.

For More Information

• Our publications

- Jiwon Kim, Steven M. Seitz, Maneesh Agrawala. The Office of the Past. *IEEE Workshop on Real-time Vision for HCI*, 2004.
- Jiwon Kim, Steven M. Seitz, Maneesh Agrawala. Video-based Document Tracking: Unifying Your Physical and Electronic Desktops. To appear in *Proceedings of UIST*, 2004.

Other related work

- David G. Lowe. Object recognition from local scale-invariant features. *International Conference on Computer Vision*, 1999.
- Pierre Wellner. Interacting with paper on the DigitalDesk. Communications of the ACM, 36(7):86.97,1993.
- D. Rus and P. deSantis. The self-organizing desk. In Proceedings of International Joint Conference on Artificial Intelligence, 1997.