
Reproducing Color Images Using Custom Inks

Eric J. Stollnitz Victor Ostromoukhov� David H. Salesin

University of Washington �Ecole Polytechnique Fédérale de Lausanne

Abstract

We investigate the general problem of reproducing color images on
an offset press using custom inks in any combination and number.
While this problem has been explored previously for the case of two
inks, there are a number of new mathematical and algorithmic chal-
lenges that arise as the number of inks increases. These challenges
include more complex gamut mapping strategies, more efficient ink
selection strategies, and fast and numerically accurate methods for
computing ink separations in situations that may be either over- or
under-constrained. In addition, the demands of high-quality color
printing require an accurate physical model of the colors that result
from overprinting multiple inks using halftoning, including the ef-
fects of trapping, dot gain, and the interreflection of light between
ink layers. In this paper, we explore these issues related to printing
with multiple custom inks, and address them with new algorithms
and physical models. Finally, we present some printed examples
demonstrating the promise of our methods.

CR Categories: I.3.4 [Computer Graphics]: Graphics Utilities; G.1.6 [Nu-
merical Analysis]: Optimization

Additional Keywords: color reproduction, color printing, gamut mapping,
ink selection, Kubelka-Munk model, Neugebauer model, separations

1 Introduction

It is of interest : : : that, regardless of the number of impres-
sions, the inks may be selected solely on the basis of their
color gamut. Their colors need not be cyan, magenta, and
yellow; nor is it required that they be transparent. The way
is therefore opened for entirely new printing processes.

—Hardy and Wurzburg, 1948 [6]

Fifty years ago, the promise of color printing with custom inks ap-
peared imminent. The advantages of such a process are clearly nu-
merous. Freed from the same fixed set of process color inks—cyan,
magenta, yellow, and black—it should be possible to print more vi-
brant colors for art reproductions, annual reports, and packaging.
Moreover, if the inks are chosen specifically for the particular im-
age being reproduced, it should be possible in many cases to achieve
these vivid colors with just a small number of inks—perhaps four—
and perhaps at no greater cost than using the four process colors. In
addition, it is common today to print boxes and wrappers with four
process inks (for images) plus two spot colors for corporate logos or
large areas of background. By selecting custom inks that comple-
ment the required spot colors, we might achieve better quality with
six inks or comparable quality with fewer inks.

In recent years, several new color printing processes have been pro-
posed that use a fixed set of six or more standard printing inks [1,
22, 28]. For those willing to use more inks, these new processes
do provide more vivid color reproduction. However, Hardy and
Wurzburg’s fifty-year-old vision of printing with arbitrary custom
inks remains elusive. Indeed, there are quite a few difficult prob-
lems that stand in the way.

For one, it is very difficult to derive a physical model that accurately
predicts how arbitrary inks will interact when printed together, in su-
perposition and in juxtaposition using halftoning. In addition to op-
tical effects, the model must take into account physical effects such
as trapping and dot gain.

Furthermore, the gamuts produced by multiple custom inks have ir-
regular, nonconvex shapes. Creating efficient, reliable gamut map-
ping algorithms for smoothly mapping image colors to the colors
that can be achieved with a given set of inks is a nontrivial problem.

Choosing the best set of custom inks to use for a given image is an-
other difficult problem—in this case, a combinatorial challenge, par-
ticularly as the number of inks used for printing gets large.

Finally, computing ink separations becomes more difficult for mul-
tiple inks. While for two inks there is always a simple analytic so-
lution, for three or more inks the problem can become either over-
or under-constrained. The problem becomes over-constrained when
the color to be printed cannot be achieved with quantities of ink be-
tween 0 and 100%. The problem is under-constrained when there
are two or more ways of achieving the same color, using different
ink combinations. This situation arises wherever the gamut is dou-
bly covered, a commonplace occurrence with four or more inks.

This paper addresses these challenges in detail with new physical
models and algorithms, then demonstrates the potential of our ap-
proach with printed examples. Although a great deal more work re-
mains to be done before Hardy and Wurzburg’s vision is achieved
in its entirety, this paper at least takes some steps toward that goal.

Related work

Power et al. [23] showed that for duotone printing, in which just two
inks are used, choosing the optimal inks for the particular image at
hand can result in remarkably good reproductions. Our paper dis-
cusses the many issues involved in generalizing their work to three
or more custom inks—what we refer to as n-tone printing. These
issues can be broken down into a number of subproblems.

First, for any given choice of paper and inks, we require a model
of the gamut of printable colors. Many existing models have been
developed for specific inks and printing processes; unfortunately,
these models typically do not apply when printing with custom inks.
More general models include the color halftoning model developed
by Neugebauer [21], and colorant layering models such as the Beer-
Bouguer, Kubelka-Munk, and Clapper-Yule equations (described
by Kang [12]). Liu describes a model for process color printing
similar to both the Kubelka-Munk layering model and the Neuge-
bauer halftoning model [16]. We model the printing gamuts of cus-
tom inks using a similar approach in Section 2, where we combine
the Kubelka-Munk and Neugebauer equations while taking into ac-
count the effects of dot gain and trapping.



The second subproblem, that of mapping the original image colors
into the gamut of available colors, has been addressed previously
for monitors and various types of printers. Studies have shown that
the least objectionable mappings are those that preserve hue at the
expense of luminance and saturation [5, 20]. In accordance with
these findings, most existing gamut mapping techniques maintain
hue while compressing each color’s luminance and saturation in one
of two ways: either toward a gray of equal luminance, or toward a
fixed gray of medium luminance [10, 14, 27, 29]. In Section 3, we
develop a continuous family of gamut mappings filling the gap be-
tween these two predominant strategies.

The problem of choosing inks has most often been framed as a
search for one fixed palette that reproduces all images well. A
number of multicolor printing approaches have been developed
to achieve greater fidelity than process inks: the PANTONE Hex-
achrome system adds an orange and a green to the four process col-
ors; Ostromoukhov [22] adds orange, green, and purple; Boll [1]
adds red, green, and blue; and Takaghi et al. [28] mention a nine-ink
process. Iwata and Marcu [9] touch on the subject of choosing the
optimal printing order for a fixed set of inks printed on fabric. How-
ever, in none of the previous literature (aside from the work done
by Power et al. for duotones) are the inks chosen to be optimal for
a given image. We discuss criteria and algorithms for choosing op-
timal inks in Section 4.

The multicolor printing processes mentioned above have corre-
sponding algorithms for computing ink separations. A number of
these methods assume the printing gamut is a convex union of tetra-
hedra [9, 19, 22, 28], but many gamuts violate this assumption.
Other separation algorithms, like those for process inks, are tailored
for particular inks. Still others use Newton’s method [15] or an
analytic solution [18, 23] to invert the gamut model, but these ap-
proaches do not generalize to more than three inks. In Section 5, we
present a robust separation method for arbitrary inks, paying partic-
ular attention to the difficulty of obtaining smooth results.

Each of the topics above is treated in more detail in the first au-
thor’s dissertation [26]. In addition to describing our models and
algorithms in the main text of this article, we display our printed
results and discuss our experimental procedures in a set of appen-
dices (printed with custom inks and inserted into the proceedings).
We conclude in Section 6 with a summary of our work and ways in
which it can be extended.

2 Modeling printing gamuts

In order to find the best combination of paper and inks from many
possible choices, we need a mathematical model of the gamut of
printable colors that results from any particular choice. Power et al.
use the Neugebauer model of color halftoning in concert with a sim-
ple ink layering model to predict duotone gamuts. The accuracy of
the gamut model is not crucial for duotone printing, since the user
cannot expect a perfect reproduction from only two inks. By con-
trast, users can be expected to be much more critical when print-
ing with three or more inks, and therefore n-tone printing requires a
much more accurate gamut model.

We develop a model below that extends the Neugebauer model of
color halftoning to account for the fact that an ink does not always
adhere to paper and to other inks. This gamut model further requires
that we know the colors achieved by overprinting combinations of
inks. As we cannot always measure these overprinted colors, we
rely on a mathematical model of layered media in addition to the
Neugebauer model. We postpone until an appendix a discussion of
the experimental procedure we followed to fit the model’s parame-
ters to measured data.

2.1 Modeling color halftoning

Most models of color halftone printing used today are based on the
equations published by Neugebauer in 1937 [21]. His model as-
sumes that small dots of color are printed in such a way that their
edges are sharply defined, their overlapping areas are distributed
randomly, and within each overlapping area each ink is either com-
pletely present or completely absent. His model also assumes we
know the colors of the printing primaries: the paper color, the color
of each ink printed on paper alone, and the color of each overprinted
combination of inks. Under these conditions, the Neugebauer equa-
tions state that the overall color of a small area is simply the area-
weighted average of the colors of the printing primaries.

Neugebauer’s model is easily generalized from its original three-
color formulation to incorporate any number of inks. For n inks,
there are 2n printing primaries (since each ink is either present or
absent in a primary). The colors of the primaries are typically rep-
resented using coordinates in the XYZ color space, though the model
applies equally well to reflectance spectra or any linear transforma-
tion of XYZ coordinates. With a slight modification of the notation
used by Power et al. [23], we will refer to the color of paper as gp,
the color of paper covered by the first ink as gp1, the color of paper
printed with the first and second inks as gp12, and so on. The frac-
tion of area in which ink i is actually printed is denoted by �i, and
we write these ink amounts collectively as � = (�1, : : : ,�n).

For a given set of printing primaries, the Neugebauer equations give
a printable color c as a function of the ink amounts�. For example,
three-ink printing yields eight printing primaries, and the Neuge-
bauer model is written as follows:

c(�) = (1 � �1) (1 � �2) (1 � �3) gp

+ (�1) (1 � �2) (1 � �3) gp1
+ (1 � �1) (�2) (1 � �3) gp2
+ (�1) (�2) (1 � �3) gp12
+ (1 � �1) (1 � �2) (�3) gp3
+ (�1) (1 � �2) (�3) gp13
+ (1 � �1) (�2) (�3) gp23
+ (�1) (�2) (�3) gp123

2.2 Adding trapping to the Neugebauer model

Implicit in the Neugebauer model is the assumption that if we intend
to cover a fraction �i of an area with ink i, we can actually achieve
that fractional coverage. In reality, because of the physical proper-
ties of inks and papers, some of the ink on the printing plate may not
stick to the printed page. The portion of ink that does stick is said
to be “trapped” by the paper. We will denote by tp1 the fraction of
ink 1 that sticks to paper, and by tpij the fraction of ink j that sticks
to ink i (the trapping fraction for ink j on ink i on paper).

With this convention, we can model the color c we get by trying to
cover a fraction �1 of the paper with ink 1:

c(�) = (1 � tp1�1) gp + tp1�1 gp1 (1)

Now suppose we print a second ink on top of that result. Of the area
that was the color of paper gp, a fraction tp2�2 will get covered by
ink 2 and become gp2, while the rest will stay the same. Likewise,
in the area that was colored gp1, a fraction tp12�2 will be overprinted
with ink 2 and become gp12, while the rest will stay the same. Thus,
the result is a weighted average of four colors (as in the Neugebauer
model):

c(�) = (1 � tp1�1) (1 � tp2�2) gp

+ (tp1�1) (1 � tp12�2) gp1
+ (1 � tp1�1) (tp2�2) gp2
+ (tp1�1) (tp12�2) gp12

(2)

2



If we add a third ink, the result will be a weighted average of eight
colors, and we need seven trapping fractions:

c(�) = (1 � tp1�1) (1 � tp2�2) (1 � tp3�3) gp
+ (tp1�1) (1 � tp12�2) (1 � tp13�3) gp1
+ (1 � tp1�1) (tp2�2) (1 � tp23�3) gp2
+ (tp1�1) (tp12�2) (1 � tp123�3) gp12
+ (1 � tp1�1) (1 � tp2�2) (tp3�3) gp3
+ (tp1�1) (1 � tp12�2) (tp13�3) gp13
+ (1 � tp1�1) (tp2�2) (tp23�3) gp23
+ (tp1�1) (tp12�2) (tp123�3) gp123

(3)

In general, for n inks the resulting color will be a weighted average
of the 2n printing primaries, where the weights depend on 2n � 1
trapping fractions.

2.3 Adding dot gain to the Neugebauer model

In addition to the effects of trapping, offset printing is subject to dot
gain. The halftoned dots of an ink appear larger than they should
for two reasons: ink spreads out on the paper (physical dot gain),
and some of the light entering the paper is scattered until it emerges
through dots of ink (optical dot gain). We can account for both va-
rieties of dot gain using an empirical model that corrects the value
of�i for each ink. When we produce a halftone separation that spec-
ifies a coverage �̄i, we find that one minus the actual coverage in the
printed result is approximated very closely by a power law:

1 � �i = (1 � �̄i)
i (4)

The parameter i associated with ink i can be determined from
experimental data using standard curve-fitting techniques, as dis-
cussed in an appendix. Note that if we desire an actual coverage
of �i, we can always solve the equation above for �̄i, the coverage
we should specify.

2.4 Modeling the printing primaries

We have so far assumed that we know the colors of the printing pri-
maries. While it is straightforward to measure these colors for a
small set of inks (like the process inks) on a small set of papers, it
is impractical to do so for all the combinations that could be chosen
from large sets of inks and papers. If we want to print on a new pa-
per without measuring all our inks on that paper, we need a model
capable of predicting the primaries. There are many levels of com-
plexity we can introduce into a model; we will start with a simple
model and progress to more complicated ones.

If we assume that a layer of ink acts as an ideal filter, we need to
know only how much light it transmits at each wavelength �. We
will write the transmittance of the ink as Ti, and the reflectance of
paper as Rp (for some wavelength �). The reflectance of ink on pa-
per is given by the amount of light that penetrates the ink (Ti), re-
flects off the paper (Rp), and emerges through the ink again (Ti):

Rpi = T2
i Rp (5)

We can measure Rpi and Rp using a spectrophotometer, but not Ti

because it is a property of the ink layer without paper. However, we
can characterize an ink by printing an identical layer of that ink on a
variety of papers, measuring Rp and Rpi for each paper, then fitting Ti

to the model. Unfortunately, a single transmittance spectrum may
not be enough information to accurately model an ink on paper, let
alone one ink atop another.

One problem with the simple model above is that inks reflect some
light in addition to absorbing and transmitting light. If we introduce
a reflectance Ri for the ink, we have

Rpi = Ri + T2
i Rp (6)

��������yyyyzzzzink

air

paper

Ti

Ti

Rp

Ri
~

Ti

Rp

Ri
~

Ri
ink

air

paper

Ti

Ri Ti

Rp

Ri
~

Ti

Rp

Ri
~

Figure 1 The light reflected by a single layer of ink on paper.

Once again, we can measure Rp and Rpi for a single ink on a variety
of papers, and fit Ri and Ti to the model.

Equation (6) is subsumed by a more general model, known as the
Kubelka-Munk model (described by Judd and Wyszecki [11, pages
420–438] and by Kortüm [13], among others). As Figure 1 illus-
trates, light can reflect any number of times between the ink and pa-
per before finally exiting the ink layer, making the reflectance of ink
on paper an infinite sum of terms:

Rpi = Ri + T2
i Rp(1 + R̃iRp + R̃2

i R2
p + � � � ) = Ri +

T2
i Rp

1 � R̃iRp
(7)

The reflectance of the back side of the ink layer, R̃i, can differ from
the reflectance of its front side because the layer may be inhomo-
geneous. Now we must fit three reflectance spectra (Ri, R̃i, and Ti)
to measured data in order to characterize an ink. If R̃i is identically
zero, we are left with equation (6); if Ri is also zero, we are left with
equation (5).

Note that we can modify equation (7) to predict the reflectance of
one ink on another ink (on paper), assuming the top ink layer be-
haves the same as it would on paper. If we print on paper p using
ink i followed by ink j, we can compute Rpij from quantities we have
measured or fit to measurements:

Rpij = Rj +
T2

j Rpi

1 � R̃jRpi
(8)

The Kubelka-Munk model can be derived from physical principles,
but only under certain assumptions. One assumption is that all the
layers have the same index of refraction. However, the index of re-
fraction of a colorant layer is typically between 1.45 and 1.6 [11,
page 398], while that of air is very nearly 1. As a result of the dif-
ference in indices, some of the incident light will undergo Fresnel
reflection at the material interface.

We can correct for Fresnel reflection at the boundary between ink
and air using a construction similar to that of the Kubelka-Munk
model. Suppose �ai is the fraction of diffuse light traveling from air
to ink that is reflected by the surface of the ink layer, and �ia is the
surface reflectance for light going from ink to air. Then, according
to Saunderson [25], we find the corrected reflectance R0

pi of a layer
of ink on paper by modifying the prediction given by equation (5),
(6), or (7) as follows:

R0

pi = �ai + (1 � �ai)(1 � �ia)
Rpi

1 � �iaRpi
(9)

Assuming dried ink has an index of refraction of 1.5, �ai is approx-
imately 0.1 and �ia is about 0.6 for all wavelengths [11, page 417].

Fresnel reflection may also occur at the boundary between ink and
paper if the interface is planar. In this case, we adjust our earlier
equations using surface reflection coefficients �ip (for light going

3



white

orange

purple
green

yellow

black

orange

purple

green

yellow

Figure 2 Front and top views of a four-ink gamut.

from ink to paper) and �pi (for the opposite direction). We simply re-
place Rp in equations (5), (6), or (7) with a corrected reflectance R0

p:

R0

p = �ip + (1 � �ip)(1 � �pi)
Rp

1 � �piRp
(10)

Uncoated papers consist largely of air, so their indices of refraction
are close to 1 and we can use �ip = 0.6 and �pi = 0.1. For lack of
better knowledge, we use the same numbers for coated papers; how-
ever, these papers and modern plastic substrates deserve more study.
Note that in the previous two equations Rp and R0

pi are measurable
quantities, while Ri, R̃i, and Ti are characteristics of the ink that we
need to derive from other measurements.

Regardless of the level of complexity we choose for our ink layering
model—equation (5), (6), or (7), with or without the corrections in
equations (9) and (10)—we often need to convert reflectance spectra
into tristimulus XYZ colors for use in the color halftoning model of
Section 2.2. Judd and Wyszecki describe this conversion in detail
and provide the necessary data for standard illuminants and the XYZ
matching functions [11, pages 125–153 and 472–479].

3 Gamut mapping

Suppose we want to reproduce an image using a particular combi-
nation of paper and inks. We can use the model presented in the
previous section to predict the gamut of all printable colors associ-
ated with this choice of paper and inks. In most cases, there will
be a number of image colors that are outside the gamut of printable
colors. We therefore need to define a gamut mapping function that
associates a printable color with each of the original image colors
without introducing unnecessary color distortion into the image’s
appearance.

According to a number of articles that address gamut mapping, it
is most important to maintain the hue of a color, while allowing its
lightness and saturation to change in order to fit within the printing
gamut [5, 10, 14, 20, 27, 29]. In the sections that follow, we devise
a hue-preserving gamut mapping strategy that is more general than
existing ones, then present its coordinate system and algorithmic de-
tails. We conclude our discussion of gamut mapping with some re-
marks on the special steps we need to take when printing with only
one or two inks.

3.1 Strategy of n-tone mapping

In general, the gamut of three or more inks occupies a volume in
color space. A typical example is shown in Figure 2, illustrating
the fact that printing gamuts can take on unusual nonconvex shapes.
Because an n-tone gamut occupies a volume, we can attempt to pre-
serve hues (though for some choices of inks, not all hues may be
printable). Among the hue-preserving gamut mapping algorithms in
the literature, there are two predominant strategies for altering lumi-
nance and saturation: the first reduces saturation, leaving luminance

fixed [14, 17, 27]; the second simultaneously alters luminance and
saturation toward the central gray of the gamut [14, 17].

Because the first approach maps colors into the printing gamut by re-
ducing their radial distances from a central gray axis, we refer to it
as a “cylindrical” mapping. Likewise, because the second approach
reduces each color’s distance from a single central gray point, we re-
fer to it as a “spherical” mapping. Laihanen notes that depending on
the image being reproduced, one may be preferable to the other [14].
The cylindrical mapping has the advantage of preserving luminance
relationships, but it tends to desaturate brightly colored highlights
until they become white. The spherical mapping keeps the high-
lights more saturated, but reduces their luminance at the same time,
resulting in a reordering of brightnesses in the image.

In order to obtain some of the advantages of both the cylindrical
mapping and the spherical mapping, we developed a parameterized
family of intermediate mappings. While we could simply interpo-
late between the color given by the cylindrical mapping and the
color given by the spherical mapping, there would be no guarantee
that the result would lie in the printing gamut (because gamuts are
not necessarily convex). Instead, we vary the locus of colors that
serve as the centers of projection in the mapping: the cylindrical
mapping moves colors toward a fixed line segment along rays or-
thogonal to a cylinder; the spherical mapping moves colors toward
a single point along rays orthogonal to a sphere; our new mapping
moves colors toward a line segment whose length is parameterized,
along rays orthogonal to an ellipsoid. Figure 3 illustrates the di-
rections in which colors are compressed by each type of mapping.
These directions are made explicit in the following section.

3.2 Coordinate system of n-tone mapping

The implementation of our n-tone gamut mapping makes use of a
special-purpose coordinate system that varies according to the pa-
rameter k. The coordinate system yields a cylindrical mapping when
k = 0, a spherical mapping when k = 1, and an ellipsoidal map-
ping for intermediate values. Transforming an XYZ color into this
coordinate system takes place in two stages. The first is a linear
transform that rewrites the color as a triple (u, v, y), where y repre-
sents luminance and u and v hold the chrominance information. This
linear transform shears the dark-to-light axis of the printing gamut
(while preserving luminance) until it parallels the luminance direc-
tion, then applies a uniform scaling and translation that brings the
darkest point of the printing gamut to (0, 0, –1) and the lightest to
(0, 0, 1). Our linear transform is similar to that of Stone et al. [27,
Section 5.2], but we have replaced their rotation with a shear in order
to preserve luminance relationships throughout the gamut mapping
process.

The second stage of the transformation converts (u, v, y) to curvilin-
ear coordinates (r, h,�), where h represents hue and r and � indi-
rectly encode luminance and saturation. These new coordinates are
found by inverting the following equations:

u = r cos h cos �

v = r sin h cos�

y = (1 � k2 + kr) sin�

In this coordinate system, lines of constant h and � trace out the nor-
mals to the ellipsoid (u2 + v2)=k2 + y2 = 1; these are the lines along
which we compress out-of-gamut colors. Note that when k = 1, the
transformation above gives the standard conversion between spher-
ical and Cartesian coordinates, which is easily inverted. Likewise,
when k = 0 the equations are only a slight modification of standard
cylindrical coordinates, and are also easily inverted. However, for
intermediate values of k, we lack an analytic solution and therefore
resort to Newton’s method to solve a nonlinear equation for �.

4



v

y

u

φ

h

r

v

y

u

φ

h

r

v

y

u

φ

h

r

(a) (b) (c)

Figure 3 The coordinate systems used by three gamut mapping methods chosen from a continuum: (a) cylindrical (k = 0), (b) ellipsoidal
(k = 0.3), and (c) spherical (k = 1). Arrows on the cutaway surfaces indicate the directions in which colors are compressed.

3.3 Steps in n-tone mapping

The first step in our gamut mapping technique is to apply a global
mapping to the luminance values of the source image’s colors. As
noted by Power et al. [23], we can use any monotonically increas-
ing function to compress the image’s luminance range into the range
of printable luminance values. Experiments in the literature typi-
cally rely on clamped or linear mappings [5, 20], but we often use
a cubic mapping that has the advantages of both (see Figure 4).
This mapping is inspired by the Bézier-curve mapping described by
Power et al., but is more easily constructed. We determine a unique
cubic function by constraining the minimum and maximum input
values to map to the minimum and maximum output values, while
choosing for each endpoint a slope between 0 and 1 that yields an in-
creasing function as close as possible to the identity function (Stoll-
nitz [26] provides further details). For most values of k we can skip
this first step because subsequent steps will also adjust luminance;
it is only when k = 0 that we must compress luminance in order for
a cylindrical mapping to get all colors into the printing gamut.

The second step is to divide the set of directions that are parameter-
ized by h and � into a two-dimensional array of bins, as indicated
by the grid lines in Figure 3. The number of divisions in each direc-
tion determines the storage, efficiency, and accuracy of subsequent
mapping steps; numbers near 20 are adequate for quick previews,
while numbers near 100 are more suitable for high-quality output.

Next, we determine the maximum extent in the r direction of the
printing gamut within each (h,�) bin. For each bin, we construct
a ray centered within that bin, and intersect it with each of the bilin-
ear surfaces that bound the gamut model described in Section 2.2.
We associate with the bin the largest r value encountered in these
intersection tests, which we call r̄print.

We also store with each bin a quantity called r̄image, defined as the
largest r value of all image colors lying in that bin. If the printing

ou
tp

ut

input

ou
tp

ut

input

ou
tp

ut

input

(a) (b) (c)

Figure 4 Monotonically increasing mappings: (a) Clamped map-
ping preserves exact values, except at the endpoints. (b) Linear map-
ping preserves relationships. (c) Cubic mapping provides a good
compromise between the two.

gamut exceeds the image gamut for some bin, we set r̄image equal
to r̄print, so that gamut mapping will not spread similar colors apart.

The final step is to apply a mapping to the r value of each image
color, where the mapping varies from one bin to the next. Given
an image color, we determine the four bins closest to the (h,�) co-
ordinates of that color, and apply bilinear interpolation to the cor-
responding values of r̄image and r̄print. We construct a function that
maps zero to zero and the interpolated value of r̄image to the interpo-
lated value of r̄print. The intermediate values of r can be computed
using a clamped, linear, or cubic mapping, as shown in Figure 4.
Once all the image colors have been mapped, we can convert them
from (r, h,�) coordinates back to XYZ coordinates, and they should
all lie within the printing gamut.

3.4 Monotone and duotone mappings

The gamut mapping steps described above (and many other color
gamut mapping techniques) rely on assumptions about the shape of
the printing gamut that do not always hold. In particular, we as-
sumed that the gamut consists of a volume of colors that includes
the line segment connecting the darkest and lightest printable col-
ors. If we are printing with one ink, however, the gamut is a line
segment of colors rather than a volume. With two inks, the gamut
is a surface rather than a volume. We treat one-ink (monotone) and
two-ink (duotone) printing as special cases.

The gamut of colors that can be printed with one ink is given by
equation (1); it consists of a line segment parameterized by �1. Ac-
cording to Stone et al. [27], the most important quality to preserve
(aside from the gray axis, which we cannot keep gray) is maximum
luminance contrast. Therefore, we first remap the input image’s
luminance values to lie within the luminance range of the print-
ing gamut. As in the n-tone mapping, we can use any one of the
clamped, linear, or cubic mappings illustrated in Figure 4. Once we
finish this remapping, we can safely project each image color onto
the printing gamut while preserving luminance relationships.

The gamut produced by two inks is a bilinear surface given by equa-
tion (2). Once again, because the gamut has lower dimensionality
than the space of colors, we must resort to projection within any
gamut mapping. The core of the work presented by Power et al. [23]
is a method of mapping image colors to a duotone gamut while pre-
serving as much color information as possible. Their algorithm first
remaps the input image’s luminance values as described above, then
remaps a second component (s for “spread”) of the image colors that
is orthogonal to luminance. This second remapping is a function of
luminance, so that the most compression is applied to the darkest
and lightest colors, where the printing gamut is the most narrow (and
the least compression to the mid-luminance colors, where the gamut

5



is widest). Finally, each color is projected onto the printing gamut
in the direction orthogonal to the first two mappings.

We offer two minor improvements to the method described by
Power et al. First, we avoid discontinuities in our duotone gamut
mapping by applying piecewise-linear (rather than piecewise-
constant) interpolation to the bin values approximating the gamut’s
extent in the s direction. Second, we offer a choice of luminance
mappings, including the clamped and cubic mappings shown in Fig-
ure 4 in addition to the linear mapping used by Power et al.

4 Selecting inks

Throughout Sections 2 and 3 we treated the paper and inks as though
they were known. Our goal, however, is to find the optimal com-
bination of paper and inks for a given image. This task is difficult
because there may be a huge number of possible choices, most of
which will result in poor reproductions. Often it is not obvious even
to an experienced user whether or not a choice of paper and inks will
reproduce an image well; therefore, we are not yet willing to rely on
heuristic rules for accepting or rejecting combinations. Instead, we
pose the problem of selecting paper and inks as a combinatorial op-
timization problem and apply a general-purpose algorithm to solve
it, just as Power et al. [23] did for duotones. We describe below our
objective function and optimization algorithm for choosing inks.

4.1 Ink-selection objective function

Our objective function for ink selection is very similar to the one de-
scribed by Power et al. Given an image and a combination of paper
and inks, we apply the gamut mapping algorithm discussed in Sec-
tion 3 to obtain a preview image. Then we compare the preview im-
age pixel-by-pixel to the original image, using the L2 norm in L�a�b�

color space. The value we assign to our objective function is the
average over all pixels of the L2 distance between the preview and
original image.

The efficiency of the objective function is an important concern be-
cause it gets evaluated often. Fortunately, we don’t need to apply
our gamut mapping algorithm to each of the tens or hundreds of
thousands of distinct colors contained in a typical high-resolution
scan. Instead, we can use Heckbert’s median-cut algorithm [7] to
quantize the image to about 2,000 distinct colors while maintaining
its general appearance. Then we need only apply the gamut map-
ping algorithm to these quantized colors, and weight each color’s
L�a�b� distance according to the number of pixels of that color in
the original image.

4.2 Ink-selection algorithm

Power et al. chose a simulated annealing algorithm for their com-
binatorial optimizer because of its ability to find global minima and
relatively good local minima. We prefer to use a genetic algorithm,
mainly because it maintains a population of candidate solutions,
each of which can be presented to the user as a possibility when
the optimizer is finished. Simulated annealing and the genetic al-
gorithm are both stochastic optimization techniques, making use of
random changes to intermediate solutions in order to avoid local
minima. In fact, Power et al. made their simulated annealer slightly
closer to a genetic algorithm by using multiple initial conditions to
obtain a variety of solutions; likewise, we made our genetic algo-
rithm slightly closer to simulated annealing by assigning a time-
varying probability distribution to each of the genetic operators.

Following suggestions made by Davis [3], we include in our imple-
mentation a number of variations on the “standard” genetic algo-
rithm. We maintain a population of candidate combinations, each

of which is distinct from the others, and we keep them sorted ac-
cording to their respective objective function values. At each itera-
tion, we choose a genetic operator according to a time-varying prob-
ability distribution, and we choose its operands randomly from the
current population. The operators for our application include global
mutation, local mutation, and crossover. Global mutation operates
on one combination, changing the paper and inks completely ran-
domly; this operator is more likely to be chosen in early iterations.
Local mutation also operates on one combination, but changes the
paper and inks only to nearby colors; this operator is more likely in
later iterations. Crossover takes two combinations and exchanges
each of the papers and inks with 50% probability. The likelihood of
choosing crossover starts out high, and gradually declines to zero,
so as to prevent one solution from dominating the population.

Every time an operator produces a previously untested combination
of paper and inks, we evaluate the objective function and compare
the result to the current members of the population. If the new com-
bination outperforms the worst member of the population, we re-
place the old one with the new one. Thus, each iteration maintains
or improves the population. We repeat the process for a fixed num-
ber of iterations, or until a fixed number of iterations fails to yield a
decrease in the objective function. The results are presented to the
user as a list of possible paper and ink combinations, sorted from
best to worst, from which he or she can choose any one to preview.

5 Computing separations

Once the paper and inks have been selected and a preview has been
computed using our gamut mapping algorithm, our only remaining
task is to produce separations for each of the inks. More precisely,
for each color generated by the gamut mapping algorithm, we need
to find the amount of each ink required to reproduce that color. The
mathematical model of printing gamuts that we developed in Sec-
tion 2 gives tristimulus colors as a function of the ink amounts �i,
whereas now we want to find the ink amounts as a function of color.
Determining this inverse function is no simple matter, mainly be-
cause each tristimulus component of our model is a nonlinear func-
tion of the � values. In addition, the inverse is underdetermined
when there are more than three inks; there may be many � values
that yield the same color. There is another difficulty that arises in
practice: some of the colors for which we wish to compute separa-
tions may be slightly out of gamut because of imprecisions in the
gamut mapping stage, yet we still need to find � values between
zero and one that reproduce similar colors.

For more than three inks, we cannot invert the gamut model ana-
lytically as Power et al. [23] did for two inks, and Mahy and De-
labastita [18] did for three. We also cannot treat the printing gamut
as a convex union of tetrahedra, as some authors have [9, 19, 22, 28];
many gamuts are actually concave. Instead, we rely on a continu-
ous optimization technique to find the separations that most closely
reproduce a desired color while meeting the physical constraints of
the printing process. The details of our objective function and opti-
mization algorithm are given below.

5.1 Separation objective function

The goal of the current optimization is to find the ink amounts � =
(�1, : : : ,�n) for which our gamut model yields the color c(�) clos-
est to a given tristimulus color c̄. We formulate the objective func-
tion as the sum of four terms:

f (�; c̄,�ref) = w1 kc(�) � c̄k2

+ w2
P

i max(0,��i,�i � 1)2

+ w3 max
�

0,
P

i �i � �limit

�2

+ w4 k���refk
2

6



The first term of the objective function is just the square of the dis-
tance in XYZ color space between the desired color c̄ and the color
our gamut model predicts from the� values. For an in-gamut color,
the optimizer should find a solution where this term is zero. For an
out-of-gamut color, minimizing the first term is akin to projecting
onto the nearest point of the gamut, as was done by Stone et al. be-
fore computing separations [27]. We arbitrarily choose the weight
w1 = 0.005, and set the remaining weights by trial and error based
on the magnitudes of the terms.

The second and third terms introduce penalties for violating con-
straints inherent in the printing process. The second term bounds
each of the ink amounts between 0 and 1, thereby moving out-of-
gamut colors to in-gamut separations. The third term ensures that
the total amount of ink does not go over the “ink limit,” the point
at which ink no longer adheres to the page. The ink limit depends
upon the press and the paper; we use �limit = 3.7. We typically set
w2 = w3 = 1000 so that ink amounts violating these constraints are
strongly penalized.

The final term of the objective function allows us to achieve a unique
solution when there are multiple ways to produce the same color.
We do so by finding the solution that is closest to a given set of ref-
erence values �ref. We use a relatively small weight for this term
(w4 = 0.025) so that it does not prevent the color c(�) from match-
ing c̄. We can set each component of �ref to 0 or 1 to minimize or
maximize the amount of ink used, or choose 0.5 for an intermediate
solution.

Unfortunately, we find that these simple choices of reference values
often lead to separations containing artificial discontinuities. Be-
cause the ink amounts used for adjacent pixels are computed inde-
pendently, slightly different colors may result in very different sep-
arations. While in theory these separations will produce similar col-
ors when printed, in reality even the slightest misregistration reveals
the discontinuities. To avoid such artifacts, we try to compute sepa-
rations that are just as smooth as the input image. One possible solu-
tion is to set�ref to the ink amounts of the most similar color among
the four adjacent pixels that have already been separated. This ap-
proach eliminates many artifacts, but because of the asymmetry in-
herent in processing pixels from left to right and top to bottom, it
may still produce discontinuities in some directions.

We can generate much better separations using a multiresolution al-
gorithm based on image pyramids. The central idea is to compute
for each pixel the ink amounts that produce the right color and are as
close as possible to the ink amounts of the entire surrounding neigh-
borhood. Of course, the ink amounts that best reproduce a pixel’s
neighborhood depend in turn on a larger neighborhood, and thus we
rely on a recursively defined image pyramid. First, we construct a
pyramid of reduced images from the gamut-mapped source image
by repeatedly applying a low-pass filter followed by downsampling.
We use a separable low-pass filter with coefficients 1

16 (1, 4, 6, 4, 1);
see Burt and Adelson [2] for further details on image pyramids.
Next, we compute separations for the lowest-resolution image (with
each component of �ref set to 0.5). Then we calculate new separa-
tions for each higher resolution image, using as the reference val-
ues �ref an enlarged version of the current separations (where en-
largement consists of upsampling followed by low-pass filtering).
The result is a set of separations at the highest resolution that main-
tain the smoothness of the original color image. Smoothness comes
at the cost of computing separations for the entire image pyramid,
but this is only 4/3 the work of computing separations just at the
highest level.

5.2 Separation algorithm

There are a plethora of continuous optimization algorithms we could
apply to the separation problem. We can choose among them by

considering the amount of information they require and their rates
of convergence. Because we can efficiently compute the first par-
tial derivatives of all the terms in our objective function, we can use
optimization techniques that achieve quadratic convergence rates.
These include the conjugate gradient method and “quasi-Newton”
methods, among others. We found the BFGS quasi-Newton method
to be the most efficient for our problem (even when compared to
Newton’s method, which uses costly second derivative information
as well). Detailed descriptions of these algorithms are given by
Press et al. [24, pages 420–430].

6 Conclusion

In this paper, we have laid out a general framework for multi-
color printing with custom inks, and described algorithms that show
promise for solving longstanding problems in color printing. Our
gamut model combines previous ink layering and halftoning mod-
els with modifications for trapping and dot gain. We introduced a
new ellipsoidal gamut mapping that effectively fills a gap between
the existing cylindrical and spherical variations of gamut mapping.
We described the operators needed to adapt a genetic algorithm to
the selection of papers and inks. Finally, we developed a robust
multiresolution algorithm that, given any combination of inks, com-
putes separations that are as smooth as the input image.

The appendices present practical results of our experiments in the
realm of custom-ink color image reproduction. We outline there the
steps required to fit the parameters of our gamut model to measured
data, and exhibit a variety of printed images produced with our tech-
niques. While we still see room for improvement in these results,
they demonstrate the potential for making color reproductions with
custom inks that are more accurate or less costly to produce than
with standard process inks.

In general, n-tone printing offers the opportunity to match monitor
colors better than process color printing because the inks are cho-
sen specifically for the image. Moreover, because we construct a
gamut mapping that is customized for the image at hand, we can
achieve a much more accurate reproduction than is possible with a
gamut mapping designed to bring all monitor colors into the same
printing gamut. As a case in point, our gamut mapping will not alter
an image whose colors all happen to fall within the printing gamut,
while many other algorithms will shift the image colors merely be-
cause some colors in the monitor gamut (but not in the image) are
not printable.

In the near future, we hope to eliminate some of the remaining arti-
facts from our results. In particular, we would like to eliminate the
extreme desaturation of out-of-gamut hues by introducing a selec-
tive hue compression method. By using stochastic screening for our
future printing experiments, we will be able to avoid the moiré inter-
ference patterns present in traditional halftones when four or more
inks are assigned different screen angles. We are also interested in
the effects achievable by measuring and printing opaque inks on
dark papers.

There are a number of other ways in which this work can be ex-
tended. We could model metallic inks by including angular varia-
tion in the ink layering model, or capture the behavior of fluorescent
inks and papers by treating reflectance and transmittance as func-
tions of both incoming and outgoing wavelength. By substituting
a model of the inks and halftoning process of ink-jet printers for
our current gamut model, we could suggest custom ink choices and
compute separations for these widely available devices (assuming
cartridges of custom inks were available).

Our gamut mapping algorithm might be improved by performing
the mapping in a perceptually uniform color space like L�a�b� or
L�u�v�, as recommended by MacDonald [17] and Wolski et al. [29].

7



Montag and Fairchild [20] suggest using different gamut mapping
strategies for light colors and dark colors.

We are considering a variety of changes to the way in which the op-
timizer chooses inks. The user could indicate to the optimizer which
colors are most important by painting a weighting function over the
original image; these weights would multiply each pixel’s L�a�b�

distance in the objective function. We could also use the RLab color
space [4] or Hunt’s color-appearance space [8] instead of L�a�b� to
obtain a more accurate estimate of color differences. With more
terms in the objective function, we could try to minimize the cost of
the materials or their environmental impact (favoring recycled pa-
pers and soy inks), maximize the longevity of the reproduction (fa-
voring acid-free papers and fade-resistant inks), or reduce the im-
pact of misregistration artifacts by favoring inks similar in color to
the image subject matter. As a more general extension, we might
optimize not only the paper and inks, but also the gamut mapping
parameters and even the choice of which images to print.

As mentioned earlier, well-chosen heuristics may help to speed up
the selection of inks by eliminating poor combinations before any
time is spent evaluating them. We hope to accelerate the separation
algorithm as well, perhaps by exploiting coherence of image colors
in color space, or using a local approximation to our gamut model
that is more easily inverted.

Acknowledgments

We are grateful to Safeco Insurance’s Graphics & Printing Services
for their donation of time and resources. Thanks to Roger Hersch,
Pat Lewis, Frédéric Pighin, and Joanna Power for helpful discus-
sions. This work was supported by a grant from the Washington
Technology Center and Numinous Technologies, an NSF Presiden-
tial Faculty Fellow award (CCR-9553199), an ONR Young Inves-
tigator award (N00014-95-1-0728), and industrial gifts from Mi-
crosoft and Pixar.

References

[1] Harold Boll. A Color to Colorant Transformation for a Seven Ink Pro-
cess. In Device-Independent Color Imaging, volume 2170 of Proceed-
ings of the SPIE, pages 108–118, 1994.

[2] P. J. Burt and E. H. Adelson. The Laplacian Pyramid as a Compact
Image Code. IEEE Transactions on Communications, 31(4):532–540,
April 1983.

[3] Lawrence Davis. Handbook of Genetic Algorithms. Van Nostrand
Reinhold, New York, 1991.

[4] M. D. Fairchild and R. S. Berns. Image Color-Appearance Specifica-
tion Through Extension of CIELAB. Color Research and Application,
18(3):178–190, June 1993.

[5] R. S. Gentile, E. Walowit, and J. P. Allebach. A Comparison of Tech-
niques for Color Gamut Mismatch Compensation. Journal of Imaging
Technology, 16(5):176–181, October 1990.

[6] Arthur C. Hardy and F. L. Wurzburg, Jr. Color Correction in Color
Printing. Journal of the Optical Society of America, 38(4):300–307,
April 1948.

[7] Paul Heckbert. Color Image Quantization for Frame Buffer Display.
In Proceedings of SIGGRAPH 82, pages 297–307, 1982.

[8] R. W. G. Hunt. Revised Colour-Appearance Model for Related and
Unrelated Colours. Color Research and Application, 16(3):146–165,
June 1991.

[9] Kansei Iwata and Gabriel Marcu. Computer Simulation of Printed Col-
ors on Textile Materials. In Color Hard Copy and Graphic Arts III,
volume 2171 of Proceedings of the SPIE, pages 228–238, 1994.

[10] Tony Johnson. A Complete Colour Reproduction Model for Graphic
Arts. In Proceedings of the Technical Association of the Graphic Arts,
pages 1061–1076, 1996.

[11] D. B. Judd and G. Wyszecki. Color in Business, Science, and Industry.
John Wiley and Sons, New York, 1975.

[12] Henry R. Kang. Comparisons of Color Mixing Theories for Use in
Electronic Printing. In Proceedings of the IS&T/SID Color Imaging
Conference: Transforms & Transportability of Color, pages 78–82,
1993.

[13] Gustav Kortüm. Reflectance Spectroscopy: Principles, Methods, Ap-
plications, chapter 4, pages 103–169. Springer, New York, 1969.

[14] P. Laihanen. Colour Reproduction Theory Based on the Principles of
Colour Science. In Proceedings of the International Association of Re-
search Institutes for the Graphic Arts Industry, volume 19, pages 1–36,
1987.

[15] Bruce J. Lindbloom. Accurate Color Reproduction for Computer
Graphics Applications. In Proceedings of SIGGRAPH 89, pages 117–
126, 1989.

[16] Yan Liu. Spectral Reflectance Modification of Neugebauer Equations.
In Proceedings of the Technical Association of the Graphic Arts, pages
154–172, 1991.

[17] Lindsay W. MacDonald. Gamut Mapping in Perceptual Color Space.
In Proceedings of the IS&T/SID Color Imaging Conference: Trans-
forms & Transportability of Color, pages 193–196, 1993.

[18] Marc Mahy and Paul Delabastita. Inversion of the Neugebauer Equa-
tions. Color Research and Application, 21(6):401–411, December
1996.

[19] Gabriel Marcu and Satoshi Abe. Color Designing and Simulation in
Non-Conventional Printing Process. In Applications of Digital Image
Processing XVII, volume 2298 of Proccedings of the SPIE, pages 216–
223, 1994.

[20] Ethan D. Montag and Mark D. Fairchild. Psychophysical Evaluation of
Gamut Mapping Techniques Using Simple Rendered Images and Ar-
tificial Gamut Boundaries. IEEE Transactions on Image Processing,
6(7):977–989, July 1997.

[21] H. E. J. Neugebauer. Die Theoretischen Grundlagen des Mehr-
farbenbuchdrucks (The Theoretical Foundation for Multicolor Print-
ing). Zeitschrift fuer Wissenschaftliche Photographie, 36(4):73–89,
1937. Reprinted in Neugebauer Memorial Seminar on Color Repro-
duction, volume 1184 of Proceedings of the SPIE, pages 194–202.
SPIE, Bellingham, WA, 1990.

[22] Victor Ostromoukhov. Chromaticity Gamut Enhancement by Hep-
tatone Multi-color Printing. In Device-Independent Color Imaging
and Imaging Systems Integration, volume 1909 of Proceedings of the
SPIE, pages 139–151, 1993.

[23] Joanna L. Power, Brad S. West, Eric J. Stollnitz, and David H. Salesin.
Reproducing Color Images as Duotones. In Proceedings of SIG-
GRAPH 96, pages 237–248, 1996.

[24] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T.
Fetterling. Numerical Recipes. Cambridge University Press, New
York, second edition, 1992.

[25] J. L. Saunderson. Calculation of the Color of Pigmented Plastics.
Journal of the Optical Society of America, 32(12):727–736, Decem-
ber 1942.

[26] Eric J. Stollnitz. Reproducing Color Images with Custom Inks. Ph.D.
thesis, University of Washington, 1998.

[27] Maureen C. Stone, William B. Cowan, and John C. Beatty. Color
Gamut Mapping and the Printing of Digital Color Images. ACM Trans-
actions on Graphics, 7(4):249–292, October 1988.

[28] Atsushi Takaghi, Toru Ozeki, Yoshinori Ogata, and Sachie Minato.
Faithful Color Printing for Computer Generated Image Syntheses with
Highly Saturated Component Inks. In Proceedings of the IS&T/SID
Color Imaging Conference: Color Science, Systems and Applications,
pages 108–111, 1994.

[29] M. Wolski, J. P. Allebach, and C. A. Bouman. Gamut Mapping:
Squeezing the Most out of Your Color System. In Proceedings of the
IS&T/SID Color Imaging Conference: Color Science, Systems and Ap-
plications, pages 89–92, 1994.

8


	Introduction
	Modeling printing gamuts
	Modeling color halftoning
	Adding trapping to the Neugebauer model
	Adding dot gain to the Neugebauer model
	Modeling the printing primaries

	Gamut mapping
	Strategy of n-tone mapping
	Coordinate system of n-tone mapping
	Steps in n-tone mapping
	Monotone and duotone mappings

	Selecting inks
	Ink-selection objective function
	Ink-selection algorithm

	Computing separations
	Separation objective function
	Separation algorithm

	Conclusion
	References
	Figure 1
	Figure 2
	Figure 3
	Figure 4

