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Abstract

Dynamically simulated characters are difficult to control because
they are underactuated—they have no direct control over their
global position and orientation. In order to succeed, control policies
must look ahead to determine stabilizing actions, but such planning
is complicated by frequent ground contacts that produce a discon-
tinuous search space. This paper introduces a locomotion system
that generates high-quality animation of agile movements using
nonlinear controllers that plan through such contact changes. We
demonstrate the general applicability of this approach by emulat-
ing walking and running motions in rigid-body simulations. Then
we consolidate these controllers under a higher-level planner that
interactively controls the character’s direction.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: Character simulation, character control, physics-based
character animation

1 Introduction

Real-time high-fidelity character animations are primarily achieved
through blending existing captured motion sequences. In order to
expand the range of possible motions and to provide more natural
interactions with the environment, researchers have focused on de-
signing controllers for dynamically simulated characters. Recent
years have shown some significant advances in this area [Hodgins
et al. 1995; Faloutsos et al. 2001; Yin et al. 2007; da Silva et al.
2008b]. Still, the ultimate goal of controllable fully-dynamic an-
imation that approaches the quality of motion capture systems re-
mains unsolved for a number of key reasons.

High dimensionality. Characters have a relatively high number
of degrees of freedom, making the search for the appropriate con-
trol parameters hard. Although continuous numerical optimizations
can cope with large search spaces, the stringent demands of inter-
active applications make it clear that optimization cannot solely be
performed at the time control is needed.

Underactuation. Dynamically simulated characters are difficult
to control because they have no direct control over their global po-
sition and orientation. Even staying upright is a challenge for large
disturbances. In order to succeed, a control law must plan ahead to
determine actions that can stabilize the body.

Contacts. Characters are restricted to move within a certain re-
gion of its three-dimensional environment, and these constraints are
difficult to maintain in real-time control systems. Furthermore, fre-
quent ground contacts create a highly discontinuous search space
rendering most continuous controller synthesis methods ineffective
at planning over longer time horizons.

Realism. A particular character model gives rise to a large set of
possible motions with different styles. Even if robust and stabiliz-
ing control laws can be found, it is challenging to construct those
that reproduce the intricate and agile locomotions we observe in
nature.

In this paper, we try to address these difficulties with an auto-
matic method that infers control from motion capture. We divide
our control strategy into two components: the look-ahead policy
and its contact adaptation. The look-ahead component is based on
a quadratic-cost formulation that assimilates an entire motion se-
quence to form a policy called the nonlinear quadratic regulator.
The second component corrects this policy, so that its control forces
are consistent with the contacts encountered at each simulation step.
Together, these two components yield controllers that begin to em-
ulate human motion in physically based simulations.

2 Related Work

Physically based simulation provides an automated framework for
the synthesis of realistic motion, and today natural phenomena are
automatically simulated with extreme detail and realism. Realistic
character animation has been harder to attain because the control
processes that generate internal muscle forces are still not known.
Witkin and Kass [1988] suggested optimization as a general and
automatic method for computing necessary controls. Their formu-
lation showed that a numerical procedure could generate realistic
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Figure 1: Control system overview. Our system uses spacetime optimization to precompute reference motions xx and controls, including
both joint forces x� and ground forces x�. It solves a system of algebraic Riccati equations (ARE) to form a nonlinear quadratic regulator
(NQR) as an online look-ahead policy that anticipates and tracks the reference trajectories. NQR assimilates expected contact changes by
predicting both joint controls z� and ground forces z�. A solution to a linear complementarity problem (LCP) adapts these predictions to
compute joint controls �k needed for the current contact configuration.

motions automatically by anticipating the effects of dynamics with
controls that optimize power consumption. Similar optimization
techniques are now capable of generating realistic character ani-
mations [Popović and Witkin 1999; Fang and Pollard 2003; Sulej-
manpasić and Popović 2005; Safonova et al. 2004; Liu et al. 2005],
but these computations are too slow for interactive character anima-
tion. We use a similar optimization procedure offline to precompute
reference controls that emulate captured motion patterns. We then
construct an online control policy that reproduces these motions in
physically based simulations despite potential disturbances.

Disturbances quickly invalidate optimized reference controls. Al-
though spacetime optimization is too slow, optimization over a sin-
gle time step can be performed online to adjust control for slow
purposeful motions [Vukobratovic and Juricic 1969; Stewart and
Cremer 1989; Fujimoto et al. 1998; Wieber and Chevallereau 2006;
Abe et al. 2007; da Silva et al. 2008a], as often seen and imple-
mented on walking robots [Hirai et al. 1998]. However, control of
agile legged creatures requires longer anticipation to account for
the behavior beyond the single step of numerical integration. Early
strategies for agile control [Miura and Shimoyama 1984; Raibert
1986; Raibert and Hodgins 1991] handcrafted such controls by ana-
lyzing the behavior of simplified systems such as the spring-loaded
inverted pendulum and other low-dimensional systems. Our ap-
proach also approximates the high-dimensional nonlinear dynam-
ics, but it does so with high-dimensional linear time-varying sys-
tems. The linear dynamics makes it possible to anticipate longer-
term effects automatically. In place of manual parameter tuning,
our approach relies on efficient quadratic-cost optimization to com-
pute optimized time-varying control policies. Furthermore, the
same approach applies to a variety of motions without the need to
adjust objective weights for different motions.

Our quadratic-cost optimization draws from the large body of liter-
ature on linear quadratic regulators that track reference trajectories
[Lewis and Syrmos 1995]. Although there are alternatives, some
seem difficult to apply on high-dimensional 3D characters [Ngo
and Marks 1993; Tedrake 2004; Sharon and van de Panne 2005;
Sok et al. 2007; Byl and Tedrake 2008], while others do not demon-
strate a common search strategy for skills such as starting, stopping,
walking and running [Laszlo et al. 1996; Hodgins and Pollard 1997;
Westervelt et al. 2003; Yin et al. 2007; Coros et al. 2008]. Linear
quadratic regulators have been explored in graphics [Brotman and
Netravali 1988; da Silva et al. 2008b; Barbič and Popović 2008]
and robotics [Atkeson 1994; Atkeson and Morimoto 2002; Tassa
et al. 2008]. Our work adds two major improvements. First, it em-
ploys a nonlinear quadratic regulator instead of the more common
linear quadratic regulator. This change allows us to control high-
dimensional characters and more complex motions because it ac-
counts for more state-dependent nonlinearities. Second, it controls
both ground and joint forces making it possible to plan through

contacts and over longer time periods. Our results demonstrate that
these contributions make it possible to generate more realistic and
more agile motions.

3 Look-ahead Policy

The look-ahead policy exploits the fact that both the dynamics
equations and typical contact interactions are known well in ad-
vance. We are able to extend the farsightedness of our controllers by
constructing the ground contact force predictions within a nonlinear
variant of the quadratic regulator framework. By assuming typical
contact interactions, this longer-term planning produces controllers
that can be more easily sequenced into longer locomotion skills.

3.1 System dynamics

Our dynamics model approximates human motion with a set of
rigid body limbs and constraints that roughly model the joints in
the body. The pose of the simulated character is described by a set
of independent joint coordinates q 2 Rn. Human muscles gener-
ate torques � 2 Rn�6 about each joint, leaving global position and
orientation of the body as unactuated joint coordinates. Modifying
those coordinates requires contact interaction with the environment.

Although our simulations incorporate the more general model with
Coulomb friction, we describe the frictionless case here for the sake
of simplicity. The i th contact imposes the following complementar-
ity conditions on the pose q and the contact force �i :

�i gi .q/ D 0; �i � 0; gi .q/ � 0; (1)

where gi is a measure of nonpenetration. This can represent ei-
ther the Euclidean distance of a point to the ground or the angular
distance to the articulation limits of a joint. In both cases, an ac-
tive contact with gi .q/ D 0 allows a constraint force �i > 0 to
push back to prevent geometric overlap. If the contact breaks with
gi .q/ > 0, then the force must vanish to satisfy �i gi .q/ D 0.

The dynamics of an underactuated, tree-structured articulated sys-
tem are defined by differential-algebraic constraints that express the
relationship between the generalized coordinates q, velocities v, ac-
celerations Pv, inertial properties M , and other forces:

Pq D v; (2a)

M .q/ Pv D h.q; v/ C

�
0
�

�
C Dg.q/T�; (2b)

�Tg.q/ D 0; � � 0; g.q/ � 0: (2c)

Note that constraints (2c) are the vector equivalent of (1) for nc con-
tacts, and the function h W Rn � Rn ! Rn reflects the action of



external forces and inertial accelerations. A physically based sim-
ulator generates motion by numerically integrating these equations
to generate motion. The task of a controller is to compute joint
controls � that elicit realistic human motion.

3.2 Trajectory optimization

Our controller follows precomputed reference trajectories. By de-
riving such trajectories from captured sequences of human motion,
the controller can emulate the same motion in physically based sim-
ulations. Captured motions themselves are not good references be-
cause of modeling disparities between the real human and the simu-
lated dynamical system. Indeed, given the joint coordinates, veloc-
ities and accelerations from motion capture, there may be no joint
and contact forces that satisfy all of the constraints (2). Instead,
we compute a reference motion xq.t/ and forces x�.t/; x�.t/ that are
consistent with the dynamical equations and as close as possible to
the captured data.

Our approach follows the spacetime formulation in computer
graphics literature [Witkin and Kass 1988; Cohen 1992; Liu et al.
2005]. Briefly, we minimize the deviation from captured data
and also the magnitude and smoothness of the actuation torques.
This optimization is subject to foot-ground contact constraints and
the discretization of physics constraints as determined by a finite-
difference scheme.

While this optimization accomplishes the main goal of adapting hu-
man motion to simulated dynamics, we can also modify constraints
and objective functions to derive a set of related motions from a sin-
gle captured sequence [Popović and Witkin 1999; Sulejmanpasić
and Popović 2005]. We use this approach to generate a number of
trajectories for mild turns, different speeds and stride lengths.

3.3 Optimal control

Given a reference motion and forces for a task like walking or turn-
ing, the purpose of optimal control is to compute a state-feedback
policy that supplies the joint torques needed to track the reference
trajectory. Doing this well is challenging because the joint torques
cannot directly regulate global position and orientation of the char-
acter. They can only do so indirectly through ground contacts and
the corresponding forces. Yet intermittent contacts create disconti-
nuities that complicate such planning.

Our approach computes control policies by anticipating both the
required joint torques � and the contact forces �. That is, we depart
from the conventional practice of controlling muscle forces only,
and instead we define the control vector by

u D

�
�
�

�
: (3)

Although one can also anticipate the constraint forces that limit the
articulation of the joints, we choose to augment only the ground
forces in order to specifically address the issue of underactuation.
In this idealized system, the control is an unconstrained quantity,
and therefore we ignore the algebraic constraints (2c). Also, the
location of these anticipated contacts can be chosen arbitrarily, and
in our experience they can be as simple as two points at the base
of each foot. Keep in mind that the actual geometry used in the
simulation is independent of this simplification and can be more
elaborate.

Physically based simulations use numerical integration to approxi-
mate the system dynamics with a discrete-time system. So define
the state vector x D .q; v/ to be composed of the generalized co-
ordinates and velocities. Then the simplified dynamics is given by

some discrete-time map

xkC1 D fk.xk ; uk/: (4)

Our formulation requires that fk W R2n � RnCnc�6 ! R2n be
affine in the control argument as follows:

fk.x; u/ D yhk.x/ C yGk.x/ u: (5)

This discretization can be satisfied by the explicit Euler method, or
as in our experiments, by the semi-implicit Euler method.

Now, the goal of our control policy is to drive the states of the dy-
namics simulation towards a sequence of reference states and con-
trols

xx1; xu1; xx2; : : : ; xxN �1; xuN �1; xxN

sampled at times t1; : : : ; tN . An optimal control formulation of this
tracking problem can account for the dynamics of the system and
maximize foresight by considering the entire trajectory:

minimize kxN � xxN k
2
QN

C

N �1X
kD1

kxk � xxkk
2
Qk

C kuk � xukk
2
Rk

C kukk
2
Pk

over all x1; u1; : : : ; xN �1; uN �1; xN

subject to xkC1 D fk.xk ; uk/; x1 is fixed.

(6)

The weighting between different objective terms is usually deter-
mined by diagonal (semi-) positive definite matrices QN , Qk , Rk
and Pk : For example, we observe that estimated ground forces x�
are less reliable due to frequent contact changes, so we set the corre-
sponding weights in Rk to zero while also penalizing large ground
forces with positive weights in Pk .

According to optimal control theory [Lewis and Syrmos 1995],
the first-order optimality conditions require the existence of costate
vectors �1; : : : ; �N 2 R2n satisfying

�k D Dxfk.xk ; uk/T�kC1 C Qk .xk � xxk/; (7a)

0 D Dufk.xk ; uk/T�kC1 C Rk .uk � xuk/ C Pkuk ; (7b)
�N D QN .xN � xxN /: (7c)

Unfortunately, a real-time computation of the ensuing two-point
boundary value problem is rarely possible, especially for high-
dimensional characters with nonlinear dynamics. Instead, we first
approximate the dynamics and then solve for a feedback policy.

3.4 Nonlinear quadratic regulator

The linearization of the system dynamics allows us to compute an
optimal policy for problems with quadratic cost functions. The re-
sult is a linear policy known as the linear quadratic regulator (LQR).
To obtain this control law, we define for all time indices k, the quan-
tities

�k D xk � xxk ; Ak D Dxfk.xxk ; xuk/;

�k D uk � xuk ; Bk D Dufk.xxk ; xuk/;

dk D fk.xxk ; xuk/ � xxkC1:

Then consider the linearized problem corresponding to the optimal
control problem (6) as follows:

minimize k�N k
2
QN

C

N �1X
kD1

k�kk
2
Qk

C k�kk
2
Rk

C kxuk C �kk
2
Pk

over all �1; �1; : : : ; �N �1; �N �1; �N

subject to �kC1 D Ak�k C Bk�k C dk ; �1 is fixed.
(8)



Note that we present a modified version of the time-varying LQR
that accounts for the dynamics constraints violations represented by
dk . Usually this term is zero, unless there is an disparity in finite-
difference methods between the reference trajectory optimization
of Section 3.2 and the discretization in Equation (5).

Following a standard derivation in the optimal control literature
[Lewis and Syrmos 1995], we arrive at a costate solution given by
the linear relationship

�k D sk C Sk�k ; (9)

where Sk 2 R2n�2n and sk 2 R2n are defined recursively via the
algebraic Riccati equations (ARE)

Sk D Qk C AT
k

h
S �1

kC1 C Bk .Rk C Pk/�1BT
k

i�1
Ak ;

sk D AT
kskC1 C AT

k

h
S �1

kC1 C Bk .Rk C Pk/�1BT
k

i�1
�h

dk � Bk .Rk C Pk/�1
�
Pk xuk C BT

kskC1

�i
with SN D QN and sN D 0. As a result, we obtain a familiar
LQR control law for problem (8) given by

�k D �
�
Rk C Pk C BT

kSkC1Bk

��1
�h

Pk xuk C BT
k

�
skC1 C SkC1 .dk C Ak�k/

�i
: (10)

Although this linear strategy works well on low-dimensional char-
acters [Brotman and Netravali 1988; Atkeson and Morimoto 2002;
da Silva et al. 2008b], we have found it to be unreliable for agile,
high-dimensional characters.

To salvage this look-ahead mechanism, we instead derive a non-
linear feedback policy, referred to in this paper as the nonlin-
ear quadratic regulator (NQR). We obtain it by using the costate
solution of Equation (9) as an approximation to decouple equa-
tions (7a)–(7b). Substituting (4) and (9) into (7b) and using our
assumption that fk is affine in the control, we find

0 D Dufk.xk ; uk/T�kC1 C Rk .uk � xuk/ C Pkuk

D yGk.xk/T
h
skC1 C SkC1

�
yhk.xk/ C yGk.xk/ uk � xxkC1

�i
C Rk .uk � xuk/ C Pkuk :

Solving for uk in this equation gives us a control law that we use to
predict both joint and contact forces:

zuk D

h
Rk C Pk C yGk.xk/TSkC1

yGk.xk/
i�1

�h
Rk xuk � yGk.xk/T

�
skC1 C SkC1

�
yhk.xk/ � xxkC1

��i
: (11)

This result is similar to those obtained using state-dependent Ric-
cati equations [Pearson 1962; Wernli and Cook 1975]. Our for-
mulation differs in that we assume particular affine relationships
in the dynamics and costate approximations. Our problem is also
non-homogeneous, as we minimize the magnitude of applied joint
torques and account for any disparity between integration schemes
for the reference and simulated trajectories.

4 Contact Adaptation

The nonlinear quadratic regulator is part of an idealized system that
predicts joint torques and ground forces. It anticipates the activation
of contacts by assuming that ground forces are directly controllable.

Moreover, this system neglects to consider any nonpenetration and
frictional constraints. To remove these shortcomings, contact adap-
tation reimposes these constraints and appropriately adjusts the pre-
dicted controls. It does so by solving a linear complementarity
problem in such a way that the actual system can evolve as had
been anticipated by the idealized system.

4.1 Control correction

During simulation, contact configurations will differ from those as-
sumed by the look-ahead policy. If we ignore an untimely event
such as an early heel strike, the policy can disrupt the motion by
twisting the ankle or by throwing the torso forward. If we also
neglect the angle limitations of critical joints like the knee or the
ankles, then we cannot expect the character to behave as planned
by the NQR.

To compensate for the inadequacies of the idealized system, let the
vector function '.q/ describe the most important features to emu-
late. For example, it can describe the entire set of joint coordinates
'.q/ D q, or it can include terms containing translational coordi-
nates of the torso and other larger body parts. Contact adaptation
minimizes the difference in accelerations ˛ D R' between simulated
features ˛ and the anticipated features z̨:

min
�

k˛.�; �/ � z̨.z�; z�/k2
W C k� � z�k

2
Wm

; (12)

where W and Wm are symmetric positive-definite matrices. In other
words, given the anticipated controls .z�; z�/ and the simulated con-
straint forces �, this optimization computes the muscle forces � that
roughly reproduce the anticipated behavior with preferably small
corrections to the muscle forces z�. This is a least-squares problem
with a closed-form solution because the accelerations and forces
are linearly related:

˛.�; �/ D a C Bm� C Bc�; (13a)

z̨.z�; z�/ D a C Bmz� C zBc z�: (13b)

The vector a reflects the external and inertial forces in the system,
while the matrices Bm, Bc and zBc reflect the action of muscle and
contact forces. Note that the differences between Bc and zBc re-
sult from differences in contact geometries betweeen the idealized
and simulated systems. The optimization (12) accounts for this dis-
parity by adjusting the anticipated muscle torques according to the
closed-form solution

� D z� C C .Bc� � zBc z�/ ; (14)

where
C D �

�
Wm C BT

mWBm
��1

BT
mW : (15)

This formula establishes a linear relationship between the contact
forces � and the joint torques �. A contact solver can subsequently
use this information to compute the joint torques that are compati-
ble with current contacts.

4.2 Linear complementarity formulation

Physically based simulations often compute contact forces by solv-
ing complementarity problems. Our adaptation policy will do the
same to adjust the joint torques according to the current contact
configuration.

We use a set of constraints that are a discrete-time approximation
to the constraints (2). Because of the complexity of finding a solu-
tion to these nonlinear conditions, we are limited to discretizations
that can be employed within the linear complementarity framework.



Following a standard formulation [Stewart and Trinkle 1996; An-
itescu and Potra 1997], we determine the immediate contact force
�k that solves the linear complementarity problem (LCP)

qkC1 � qk

tkC1 � tk
D vk ; (16a)

M .qkC1/
vkC1 � vk

tkC1 � tk
(16b)

D h.qkC1; vk/ C

�
0

z�k � C .qkC1/ zBc.qkC1/ z�k

�
C

�
Dg.qkC1/T

C

�
0

C .qkC1/Bc.qkC1/

��
�k ;

0 D �T
kDg.qkC1/ vkC1; (16c)

0 � �k ; (16d)
0 � Dg.qkC1/ vkC1: (16e)

This construction differs from the usual one in that we have incor-
porated the control law of Equation (14) directly into the dynami-
cal constraint (16b). Handling Coulomb friction requires additional
forces and imposes more complicated constraints, and we refer the
reader to Appendix A and the sources for their description.

4.3 Putting it all together

Given a reference trajectory .xxk ; xuk/, we compute and store the
the matrices .Sk ; sk/ that represent the look-ahead policy given by
Equation (11). At every simulation step, we evaluate this policy to
obtain the candidate controls .z�k ; z�k/. Then we form the local pol-
icy (14) by computing the matrices C , Bm, Bc and zBc associated
with the pose qkC1 of Equation (16a). At that point, we solve the
LCP (16) for �k . This process simultaneously establishes the so-
lution �k , which the simulator can use to advance to the next time
frame.

An additional advantage of our approach is that simulations rely-
ing on LCPs to compute constraint forces can implement a shortcut
that eliminates the need for solving two LCPs. Instead of solving
one LCP for control and another for simulation, a constraint-based
simulator can directly incorporate the linear expression in Equa-
tion (14) to solve a single LCP that computes contact forces.

This integrated control strategy is a consequence of the fact that the
simulator itself is controlling a world that includes both the char-
acter and its environment. As a subordinate component, the look-
ahead controller is largely ignorant of the complex interactions that
occur within the latency of a simulation step. Just as it may be ben-
eficial to apply constraint stabilization methods that combat drift, a
simulator can be further extended to accommodate linear policies
that reassert the intentions of its subordinate controllers.

5 Results

Our design methodology is applicable to a variety of mechanical
models. Two-dimensional characters are easier to control but do
not capture the full complexity of three-dimensional motion. We
therefore focus our efforts on the control of a full-body, three-
dimensional character.

5.1 Experimental setup

Our bipedal model is an articulated system with n D 29 degrees of
freedom as shown in Figure 2. For the purpose of comparison, the
inertial parameters, shown in Table 1, are similar to those found in
earlier work [da Silva et al. 2008b].

hinge joint

ball joint

u-joint

ball joint

ball joint

hinge joint

Figure 2: Character model. Our character has 29 degrees of free-
dom and consists of rigid body limbs that approximate the human
body.

body mass (kg) Ix (kg � m2) Iy (kg � m2) Iz (kg � m2)
pelvis 12:8 0:120 0:148 0:174

thigh 9:01 0:208 0:0356 0:204

shank 3:91 0:0600 8:70 � 10�3 0:0585

foot 0:757 1:99 � 10�3 1:99 � 10�3 1:16 � 10�4

torso 17:0 0:281 0:167 0:335

clavicle 2:51 6:91 � 10�3 0:0111 0:0111

arm 1:42 0:0133 1:40 � 10�3 0:0132

forearm 0:570 3:00 � 10�3 3:00 � 10�4 3:00 � 10�3

hand 0:451 2:18 � 10�4 1:30 � 10�5 2:18 � 10�4

neck 0:230 2:00 � 10�4 2:00 � 10�4 2:00 � 10�4

head 4:07 0:0248 0:0176 0:0200

Table 1: System parameters. We use a (4-sided) polyhedral ap-
proximation of the Coulomb friction cone with a static friction co-
efficient of � D 1:0.

We generated various walking motions to serve as nominal trajecto-
ries. Given a kinematic sequence captured at 120 Hz, we solve for
the corresponding control signals and also refine the trajectory to
account for noise and modeling errors. We used the optimal control
software SOCS [Betts and Huffman 1997] to perform these opti-
mizations. This is a time-consuming process that takes a few hours
to complete for each single-cycle motion clip.

The shaping of the objective used to synthesize the NQR controllers
is a trial-and-error task. We simplify this process by using the same
parameters for all time and all controllers. Furthermore, we only
use diagonal weighting matrices. Fortunately, solving the ARE is
efficient, allowing us to find a single set of parameters that pro-
duce the controllers performing to our satisfaction. Table 2 lists the
weights we used in our implementation.

We use the same process for the contact adaptation component in
determining the objective weights of Table 3. To further simplify
matters and aid analysis, we define an adaptation parameter  > 0,
and we set the regularization weight as

Wm D �11: (17)

Notice that as  vanishes, the contact adaptation mechanism be-
comes irrelevant, and we recover the naive scheme with � D z�.

5.2 Locomotion controller synthesis

Walking. We built a number of walking controllers from motion
capture trajectories, and we can synthesize perpetual walkers with
relative ease. Although the trajectory optimizer can compute a
cyclical walking trajectory, the controller will definitely not ensure



feature DOF Qq Qv .�10�2/ R .�10�7/ P .�10�5/

height 1 10 12 – –
location 2 4:0 12 – –

orientation 3 12 8:0 – –
trunk joint 3 5:0 4:0 1:0 0:40

ankle joint 2 8:0 4:0 0:20 0:30

knee joint 1 10 6:0 0:40 0:30

hip joint 3 11 8:0 0:60 0:30

shoulder joint 3 2:0 2:0 1:0 0:60

elbow joint 1 2:0 2:0 1:0 0:50

heel position 3 – – 0 0:060

toe position 3 – – 0 0:060

Table 2: Look-ahead weights. We use standard units m, s and rad
for length, time and angles. Each foot anticipates contacts on two
points: one at the heel and one at the toes.

this periodicity during simulation. It is therefore important that the
NQR algorithm be performed over many cycles. This is why the
look-ahead controller is crucial. We have found that a single-cycle
sweep of the ARE is inadequate, and that a longer horizon extend-
ing for a duration of two cycles is sufficient to stabilize the motion.

One of our tasks is to produce a wide variety of walking motions.
An animator can, of course, capture all the possible styles of walk-
ing to obtain a complete set of controllers. On the other hand, our
trajectory optimizer is capable of warping our motions within mod-
eration to yield the controllers we need. For example, we success-
fully generated controllers for slower and faster walks from a single
walking sequence.

Turning. We were able to produce turning controllers of varying
degrees and style. Specifically, we generated 15ı-, 45ı-, 60ı-, 90ı-
and 180ı-turning controllers by using the same objective weights
we used for straight walking. These turns are usually transition mo-
tions as opposed to cyclical motions like the straight walk. Using
our spacetime optimization, we impose terminal constraints on the
state of the character to match those of a typical straight-walking
trajectory. Doing so allows the ankles to behave more smoothly un-
der such common transitions, and enables direct switching between
multiple turns and straight walks.

Running. We also built a few running controllers. These motions
have pronounced heel-strike and toe-off phases followed by a less
controllable flight phase. Due to these complications, the running
controllers are more delicate and appear to be less robust on un-
even ground than the usual walking controllers. Nevertheless, we
produced controllers that can stabilize the runner indefinitely and in
environments with small perturbations. Again, we were able to use
the same parameters from the walking controllers to synthesize the
running controllers.

5.3 Real-time performance

Our controllers are capable of performing in real time at a simula-
tion frequency of 120 Hz. Even so, we found the calculation of the
constraint forces in the LCP (16) to be a bottleneck in our pipeline.

Table 3: Adaptation weights. Our
contact adaptation policy emphasizes
both body locations and joint config-
urations. Our adaptation parameter
is tuned around  D 0:02. During
simulation, we consider four contact
points per foot: two at the heel and
two at the toes.

feature W

torso height 0:010

torso location 6:0

shoulder height 0:0010

shoulder location 0:50

ankle joint 0:090

knee joint 0:20

hip joint 0:38

trunk joint 0:64

shoulder joint 0:67

elbow joint 0:54

motion
contact count computation time (ms)

average low high average
walking 3:3 1:0 4:1 1:6

running 1:6 0:7 4:2 1:3

standing 8:0 4:5 9:6 6:0

Table 4: Timing measurements. Measurements are based on
the following machine specifications: Mac OS X 10.5, Apple iMac
2:4 GHz Intel Core 2 Duo with 2 GB RAM.

As is evident in Table 4, the faster motions tend to take less time on
average because of infrequent contact events. In contrast, a stand-
ing controller with 8 active contacts is almost four times slower than
the walking controller. In practice, it is unnecessary to consider so
many contact points for such stiff motions, and the standing con-
troller can suffice with only two points per foot. Notwithstanding,
these results are dependent on the method used to solve the LCP.
For our experiments, we implemented the Lemke algorithm [Cottle
et al. 1992], a method that in hindsight is too precise for our purpose
of controlling character animation.

Alternatively, one can choose lower simulation frequencies to
achieve speed-ups. Unfortunately, this comes at the expense of ac-
curacy and numerical stability. For example, at 60 Hz we observe
that the NQR policy (11) can stabilize straight-walking motions, but
it cannot execute more agile motions like turning. The LQR policy
(10) is even more unstable at this frequency and diverges quickly
for all motions we tested.

5.4 Motion quality and stability

We found that contact adaptation (14) improves all our controllers.
Without this component, the character collapses more easily due to
a failure of balancing. To see this, we consider the average cost of
a simulated trajectory defined by the expression

1

2N

NX
kD1

kqk � xqkk
2
Qq

C kvk � xvkk
2
Qv

C k�k � x�kk
2
Rm

C k�kk
2
Pm

; (18)

where Qq, Qv, Rm and Pm are the same objective weights listed
in Table 2. Since these parameters are fixed throughout our ex-
periments, we can use this cost quantity to determine the fidelity
of our various control systems. Figure 3 summarizes our results
and confirms that contact adaptation is an essential component for
sustained locomotion including sharp turning and other agile move-
ments. In fact, all the stable regimes are nontrivial with respect to
the adaptation parameter  . That is, none of our controllers perform
well in the absence of adaptation, and conversely, the motion qual-
ity is generally enhanced with diminishing costs as the adaptation
strengthens within these stable basins.

As we reported earlier, the NQR policy stabilizes the character more
effectively than the LQR policy. Indeed, Figure 3 reveals some of
the weaknesses of the linear approach relative to our nonlinear ap-
proach. First, the elevated costs for LQR imply that it does not track
the desired trajectories as faithfully as does NQR. Secondly, LQR
suffers under more difficult maneuvers like the 180ı turn of Fig-
ure 3(c) and in disturbed settings like that of the disturbed 45ı turn
of Figure 3(e). While NQR can accomplish 45ı turning with even
larger disturbances like a 4-cm descent, the LQR fails to stabilize
the character under such stress for any value of  . These failures
are often characterized by erratic behavior at the ankles that leads
to scuffing, tripping, and ultimately numerical instabilities. Lastly,
we found that it is more difficult to determine a common  that
performs well across all LQR controllers. In short, NQR produces
better motions, more consistently, and more reliably than LQR.



Despite these gains, there are cases where NQR and contact adapta-
tion cannot stabilize the character on their own. Uneven or unlevel
terrain, for example, can significantly disturb the rhythm of the mo-
tion. In this case, we resort to more conventional measures by reset-
ting the phase of the controller depending on changes in the ground
contacts. More specifically, since the idealized system anticipates
the phase changes of the gait, we can choose to advance the con-
troller phase upon detecting the presence or absence of contacts that
characterize each phase. One can consider more sophisticated ap-
proaches [Kolter et al. 2008] to handle these disturbances, and like
our simple approach, these strategies usually require that we depart
from the unconditional tracking of the reference trajectory.

For uneven terrain, we encounter another obstacle. Here, the
bounds on stability stem primarily from the character not adapting
to lift the leg higher due to a higher ledge. For this reason, the walk-
ing controller is more robust for going downhill than uphill. For
example, the turning controller successfully guided the character
down a staircase with 6-cm ledges. When going uphill, the walking
controller trips on the ledge due to the low-foot motion present in
the natural ground walk. Ideally, the controller should discontinue
tracking the trajectory and choose a different one that lifts its foot
higher. The larger momentum of a runner makes it more sensitive
to disturbances. Interestingly, due to the flight phase, it can han-
dle higher uphill ledges of about 4 cm, while it is more sensitive to
2-cm downhill ledges that cause it to tumble forward.

5.5 Interactive locomotion controller

In our final experiment, we constructed an interactive controller
from a collection of our contact-aware nonlinear controllers by
using the value-function-based control framework [Treuille et al.
2007; McCann and Pollard 2007]. This aggregate controller con-
sists of five walking turns and one straight step. All subcontrollers
were created with the expectation that they would start from and
follow into the straight-walking controller. This ensures maximal
connectivity of controllers within the motion graph.

Given a user command at every instant, there are many ways for
a planner to concatenate the dynamic controllers and reach the de-
sired state. Some sequences of motions are obviously more delicate
or riskier than others, and failures can arise from poor decision-
making. Since the value function encapsulates the simulated con-
nectivity between all the primitive controllers, the high-level policy
can avoid the long-term failures of poorly sequenced motions. Us-
ing this optimal policy, we successfully controlled the character in
real time by varying the desired direction.

6 Conclusion

We proposed a nonlinear control system that plans through contacts
to emulate motion-capture data. It adapts the efficient quadratic
regulator framework to derive a nonlinear look-ahead policy. This
nonlinear quadratic regulator outperforms linear quadratic control,
which has been previously suggested by the literature on bipedal
control. We demonstrate that it can be applied to three-dimensional
characters without any simplifications, and that it succeeds on sharp
turns and other test cases that have stumped earlier approaches.

Look-ahead planning allows us to construct controllers that emu-
late long motion sequences. The method can be applied without
modification to sequences with many locomotion skills including
stopping, starting, turning and running. It can also be used in com-
bination with higher-level planners for interactive control of physi-
cally animated characters. Motion capture sequences can be further
adapted to produce related controllers. For example, a walking step
can be shortened or extended to produce controllers for walking at
different speeds.

Average cost vs. contact adaptation
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Figure 3: Endurance tests. A few cyclical controllers were al-
lowed to cycle for 30 s. We varied the adaptation parameter 
and computed the average cost (18) for (a) a straight-walking con-
troller, (b) a running controller, (c) a 180ı-turning controller, and
(d)–(f) a 45ı-turning controller. Both the LQR version (in red) and
the NQR version (in blue) were evaluated. The solid segments in-
dicate stable locomotion, while the dashed segments indicate fail-
ures. The character was undisturbed except in the cases (e) and
(f), in which the character descended repeatedly by 2 cm and 4 cm,
respectively. In the more extreme case of (f), the LQR policy fails to
register any stable locomotion.

We consider the high quality of final animations a strength of our
control framework, but we note that it depends on two important
factors. First, reference trajectories are important. At the very least,
they should satisfy dynamics constraints. Ideally, they should also
reflect the possibility of many different outcomes, so that they form
more general building blocks for sequencing. Secondly, the param-
eters for the objective function still need to be tuned manually. On
the positive side, tuning is fast because recursive Riccati equations
are quick to solve. Furthermore, the same set of weights automat-
ically generate time-varying control for all the motions we tried.
Nevertheless, a more systematic procedure for setting these weights
would be better.



A potential drawback of our control system is that it leverages LCP
solves used for contact simulation. Our control system might per-
form worse on simulators that do not rely on LCPs for contact sim-
ulation. However, this could also be an advantage given the ubiq-
uity of constraint-based rigid-body simulators. Our control system
could connect to LCP solves within the simulator with only minor
changes to the common application programming interface.

Our controller cannot recover from larger changes in the environ-
ment because that requires intentionally deviating from precom-
puted reference trajectories. One possibility is to compose many
of our reference-tracking controllers into a single non-parametric
controller that can arbitrate the tracking of different reference tra-
jectories. Pursuing this approach or other methods for enhancing
the resilience of our controllers should be tackled in the future.
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A Friction Model

Suppose we have nf ground contacts at the kth time frame. Then
the i th friction force ˇi

k
imposes additional linear complementarity

conditions

0 D ˇi
k

T �
� i

ke C J i .qkC1/ vkC1

�
; (19a)

0 � ˇi
k ; 0 � � i

ke C J i .qkC1/ vkC1; (19b)

0 D � i
k

�
��i

k � kˇi
kk1

�
; (19c)

0 � � i
k ; 0 � ��i

k � kˇi
kk1; (19d)

where � is the coefficient of static friction, and e is a vector of ones,
and J i .qkC1/ provides the transformation between ˇi

k
and the cor-

responding body forces and torques [Stewart and Trinkle 1996; An-
itescu and Potra 1997]. In this formulation, the uni-directional com-
ponents of ˇi

k
come in pairs and, together with their corresponding

normal components in �k , span a polyhedral friction cone specified
by (19d). In addition to the normal forces �k , we must now solve
for these tangential friction forces ˇi

k
and also the relative contact

“speeds” � i
k

.

Note that friction forces must also be predicted by the look-ahead
policy and are therefore augmented to the control vector (3). Hence,
the contact adaptation policy (14) includes additional terms to ac-
count for inconsistencies in the predicted friction forces žj . Specif-
ically, we have

� D z�CC
�
Bc� � zBc z�

�
CC

0@ nfX
iD1

Bi
f ˇi

�

znfX
j D1

zB
j
f

žj

1A ; (20)

where the matrices Bi
f and zB

j
f reflect the action of friction forces

on the feature acceleration. Similar to the frictionless case, this
policy is then substituted for �k in the dynamical constraint

M .qkC1/
vkC1 � vk

tkC1 � tk
D h.qkC1; vk/ C

�
0

�k

�
C Dg.qkC1/T�k C

nfX
iD1

J i .qkC1/Tˇi
k :

Finally, an LCP solver yields the solutions �k and ˇi
k

that deter-
mine the next state.
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