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duces high quality animations, but it does not recover from large distur-

bances that require deviating from this tracked trajectory. In order to en-

hance the responsiveness of physically simulated characters, we introduce

algorithms that construct composite controllers that track multiple trajec-

tories in parallel instead of sequentially switching from one control to the

other. The composite controllers can blend or transition between different

path controllers at arbitrary times according to the current system state. As

a result, a composite control system generates both high quality animations

and natural responses to certain disturbances. We demonstrate its potential

for improving robustness in performing several locomotion tasks. Then we

consolidate these controllers into graphs that allow us to direct the character

in real time.
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1. INTRODUCTION

Physically based simulation requires carefully crafted control sys-
tems to animate characters with agility and robustness found in na-
ture. Deriving such systems from real data is one promising ap-
proach as it can be applied without modification to many locomo-
tion skills including walking, stopping, turning and running. The
control system tracks skill-specific trajectories to compute muscle
forces that yield the same motion in physically based simulations.
An immediate benefit of such approach is high quality of final ani-
mations as they look almost as real as the data they follow.

Such tracking controllers can preserve the style of the actor’s lo-
comotion, but the generated movements are usually monotonous
reproductions. It is still a challenge to automatically find suitable
motions that transition between different skills, sometimes in the
presence of external forces and other disturbances. In order to en-
hance the realism of the simulation, the virtual character must de-
viate from rote tracking and adapt to changing conditions and envi-
ronments. Furthermore biped locomotion is notoriously susceptible
to falling, as the dynamical system must contend with the burden
of underactuation.

One possibility is to have the controller learn from more data, so
that a single control system leads to natural responses by automat-
ically selecting which data to track. Here we present such an ag-
gregate controller and the three inter-dependent processes needed
to realize this goal for three-dimensional characters.

First, instead of tracking only one trajectory, our control system
tracks multiple trajectories simultaneously, so that the character
can respond better to unexpected situations. At any point in time,
control forces are determined by automatically reweighting differ-
ent actions. This allows for natural transitions between locomotion
skills either by switching between their respective trajectories or by
blending between them. The entire switching process is automatic,
not authored.

Second, we show that this multi-trajectory composite controller can
be constructed from graphs that connect unique motion trajectories.
In contrast to the common graph traversal process where transi-
tions are made only at the end of each trajectory clip, our composite
controller switches and blends continuously through the branching
structure of the graph, allowing it to transfer at any time, instead of
just at the end of an edge. This creates a more pliable graph struc-
ture, leading to more responsive controllers.

Third, we show how our control system can accept high-level di-
rectives and integrate them in our composition process. With the
greater availablity of possible paths, the combined action is more
resilient to achieving the desired tasks. As we will see, the map-
ping from user commands to physical actions is ultimately a trade-
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Fig. 1: Different disturbances trigger different responses. From left to right, a character walking forward receives several sideway pushes of
varying degree. A controller automatically determines an appropriate action.

off between what is desirable at a high level and what is physically
possible at the lower level.

Our composition method gives the virtual character more options to
achieve long-term tasks. Besides the benefit of increased variability
and unpredictibility in the character’s behavior, our approach can
be used to enhance the robustness of certain locomotion skills. Our
control system can include latent responses that only emerge when
they are compatible with unstable configurations. As a result, the
controller can produce visually appealing recoveries in real time.

2. RELATED WORK

In computer animation, two general strategies have emerged for
control of high-dimensional characters. In one category are state-
based spring-damper systems inspired by the work of Raibert and
Hodgins [1991]. Systems in this category have produced characters
with a broad set of skills [Hodgins et al. 1995; Hodgins and Pollard
1997; Wooten and Hodgins 2000; Faloutsos et al. 2001; Yin et al.
2007; Coros et al. 2008] and perhaps even more notably characters
that are resiliant to large pushes and disturbances [Yin et al. 2007;
Raibert et al. 2008; Coros et al. 2009; Mordatch et al. 2010]. The
other category includes tracking controllers that aim to reproduce
motion trajectories within simulations [Laszlo et al. 1996; Zordan
and Hodgins 2002; Sok et al. 2007; da Silva et al. 2008; Muico
et al. 2009; Lee et al. 2010]. The use of motion capture in these sys-
tems has produced simulated characters whose motions are almost
indistinguishable from motion capture. However, no technique in
either category has delivered physically based characters that are
both lifelike and robust.

The goal of our work is to widen the applicability of tracking con-
trollers by forming primitives for more versatile control systems.
Others have explored retuning control schemes to accommodate
new tasks such as adapting running controllers from larger charac-
ters to smaller characters [Hodgins and Pollard 1997], modifying
jumping controllers [Pollard and Behmaram-Mosavat 2000], pri-
oritizing various objectives [de Lasa et al. 2010], or walking un-
der various environmental constraints [Yin et al. 2008; Wang et al.
2010]. In contrast, we combine separate controllers as components
of a composite control system.

Some systems concatenate components into sequences that achieve
new tasks or recover from disturbances [Burridge et al. 1999;
Faloutsos et al. 2001; Sok et al. 2007]. In our approach, components
are not only executed in sequence but also in parallel so that sev-
eral components may be active at any one time. Yin and collegues
[2008] have observed that simple linear interpolation of SIMBI-

CON [Yin et al. 2007] parameters can be used to adapt the walk-
ing controller. This observation was expanded upon to build a con-
troller capable of taking different step lengths to avoid holes in the
terrain [Coros et al. 2008]. However, simple linear interpolation of
control parameters does not work on tracking controllers [da Silva
et al. 2009] unless hand-crafted metrics are used to determine the
blend weights [Sok et al. 2007; Erez and Smart 2007].

Our composition process rests on the observation that a nonlinear
Bellman equation can be linearized under a change of variables
[Fleming 1978; Todorov 2009b]. A similar idea also appears in
the study of stochastic diffusion processes [Holland 1977]. Two
recent works have relied on this observation to suggest compo-
sition as method for constructing control systems from simpler
pieces [Todorov 2009a; da Silva et al. 2009]. Our paper delivers
that method for three-dimensional characters with complex mo-
tions sourced from captured data. We make some key contributions.

First, we provide a framework that enables us to perform trajectory
tracking control. Recent approaches solving general stochastic con-
trol problems [Todorov 2009b] have been shown to work well on
small problems, but it is unclear how to apply them on interactive
stylized characters due to a time-invariant formalism. We describe
a control scheme that allows us to solve a simpler optimal control
problem for following motion trajectories.

Secondly, previous works show composition under a considerable
restriction: every individual component must originate from a com-
mon optimal control formulation [Todorov 2009a; da Silva et al.
2009]. Such motion trajectory optimization is difficult to general-
ize and renders these ideas inapplicable to controllers sourced from
known motion data. Consequently, bipedal controllers have previ-
ously exhibited a limited range of behavioral styles and have been
learned over short horizon times within the gait cycle. We address
these shortcomings by developing a novel method that learns a con-
trol policy over a rich set of motions forming a cyclic graph.

Finally, we know of no other method that combines these ideas
cohesively in an interactive control setting. We give a sensible so-
lution to the interaction problem in accordance with the theme of
optimal control.

3. CONTROL SYSTEM

Composition creates one universal controller by combining sepa-
rate tracking controllers. For example, given a controller for walk-
ing straight ahead and a controller for stepping sideways, the uni-
versal controller combines them both, so that it responds to user di-
rectives or external pushes by blending or switching between these
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two actions. Our composition procedure follows from the linear-
ity of the Bellman equation, so we begin by showing how linear
quadratic regulators (LQR) can be derived and used in that frame-
work. Linearity allows us to combine cost functions of each compo-
nent into one universal cost function. Then after proper numerical
approximation, we can compute a composite control law that tracks
multiple trajectories in parallel. However, LQR components are not
resilient so we derive improved components that account for some
nonlinearities as well as grazing and unilateral contacts.

3.1 System dynamics

For a system with n degrees of freedom, its state x consists of
the pose q ∈ R

n that describes the translational coordinates and
joint orientations. It also consists of the corresponding velocities
q̇ ∈ R

n amounting to a state space, which we can define to be
X = R

n×R
n ≡ R

2n. Now, an essential element of this system is a
feedback controller that follows a prescribed state trajectory x̄(t) ∈
X . If the prescribed trajectory is consistent with some default flow

ẋ(t) = a(x(t)),

then the controller need not provide any corrective actions, and thus
we refer to this default flow as the passive dynamics, or uncon-
trolled dynamics. In practice, control forces u(t) ∈ U are needed
to stabilize the system, and their influence is conveyed linearly in
the equation

ẋ(t) = a(x(t)) +B(x(t))u(t). (1)

For an articulated body, the vector a represents the inertial and
gravitational forces acting on the rigid bodies. Usually a system
in contact with the environment induces a nonlinear coupling be-
tween ẋ and u, but here we avoid this complication by augment-
ing the contact forces to u and treating them as actuation variables
[Muico et al. 2009].

Such continuous-time models are useful in analyzing complex dy-
namical systems like ours, but they disregard the discrete-time na-
ture of the simulated mechanics. Simulators use numerical inte-
gration to discretize the system dynamics and include complicated
mechanisms to resolve constraint forces. We can model this sim-
ulated dynamics as a stochastic process, and in particular we can
describe the passive dynamics as a transition probability distribu-
tion p over the state space X . Using Euler integration with step size
h, we take it to be the Gaussian distribution

p( · | x ) = N
(

x+ ha(x), hΣ(x)
)

. (2)

Here, we assume that the covariance matrix for this distribution
spans the control subspace, which we can express as

Σ(x) = B(x)R−1B(x)T. (3)

The matrix R is symmetric positive definite and signifies our de-
gree of belief in the passive dynamics. Note that since our system
is underactuated, this covariance matrix is singular with a rank no
greater than n. The passive distribution serves as a prior distri-
bution, and now the task at hand is to find a posterior probabil-
ity distribution π suitable for tracking a sequence of desired states
x̄1, x̄2, . . . , x̄N .

3.2 Trajectory tracking

One can approach the trajectory-following problem in various
ways, but for our purposes we develop the tracking problem upon

the foundation of stochastic optimal control theory. In doing so, we
establish certain recurring quantities and then construct primitives
required for the main problem.

While the primary objective of optimal tracking is to minimize the
deviation of the system state from a nominal trajectory, it also min-
imizes the exerted control, so that the system does not aggressively
stray from the flow of the passive dynamics. We can express this
problem recursively in a Bellman equation

vk(x) = min
π

{ ℓk(x, π) + Ey∼π [vk+1(y)] } , (4)

in which the cost-to-go functions vk accumulate penalties ℓk along
state transitions governed by the process xk+1 ∼ π( · | xk ). We
choose a penalty function of the form

ℓk(x, π) = ck(x) + KL [π ‖ p ] , (5)

where the tracking cost ck measures the deviation of the state from
the desired state x̄k, while the second penalty is the Kullback-
Leibler (KL) divergence

KL [π ‖ p ] =

∫

X

π(y | x ) log
π(y | x )

p(y | x )
dy.

This is a natural measure for the discrepancy between the controlled
and the passive dynamics, and it serves to subdue any highly ag-
gressive behavior.

This class of optimal control problems admits an analytical solu-
tion, and if we can solve for the cost-to-go functions, then it follows
that the transition probability for the controlled dynamics is given
by [Todorov 2009b]

πk+1( · | x ) =
p( · | x ) e−vk+1(·)

∫

X p(y | x ) e−vk+1(y) dy
. (6)

In general, there is no closed-form solution for this expression, but
problems with quadratic cost functions in fact yield controlled dy-
namics having a Gaussian distribution. To see this, suppose that the
cost-to-go function at the next time step k + 1 is quadratic

vk+1(y) = v̄k+1 + g
T

k+1 (y − x̄k+1)

+
1

2
(y − x̄k+1)

THk+1 (y − x̄k+1), (7)

whose parameters v̄k+1, gk+1 and Hk+1 are referred to respec-
tively as the bias, gradient and Hessian of the function at x̄k+1.
Since the passive distribution is Gaussian in Equation 6, we can
identify both the mean and covariance of the controlled distribu-
tion by completing the square in the exponent. This gives us the
solution

πk+1( · | x ) = N
(

x+ ha(x) + hB(x)uk(x),

hB(x)Rk(x)
−1B(x)T

)

, (8)

whose covariance and mean can be computed using

Rk(x) = R+ hB(x)THk+1B(x), (9a)

uk(x) = −Rk(x)
−1B(x)T ∇vk+1(x+ ha(x)). (9b)

Observe that this new distribution is slightly more peaked than the
passive distribution, and such diminished covariance is a reflection
of the controller’s role in reducing the uncertainty in the system
state. Moreover, we find that Equation 9b is the same as the lin-
ear quadratic tracking control law, but we derived it in a stochastic
framework needed for our composition procedure.
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Notice that this solution assumes that we have in possession a cost-
to-go vk+1 satisfying Equation 7. Later in Section 4, we give an
algorithm to compute such quadratic functions.

3.3 Composite trajectory tracking

A controller constructed out of the foregoing prescription special-
izes in following a single trajectory. Now we show how to combine
such trajectory controllers and to track several trajectories in par-
allel. Composition problems of this kind have been established in
recent works [Todorov 2009a; da Silva et al. 2009], albeit in time-
invariant and continuous-time settings. Whereas they show a top-
down approach to derive primitive controllers, we instead take a
bottom-up approach that consolidates arbitrary controllers. As a re-
sult, the universal controller can exhibit greater variety of responses
when its components individually contribute distinctive behavior.

We shall refer to each component by its index and label its as-
sociated quantities appropriately with superscripts. Thus for each
component i, we have some cost-to-go function vik+1. We combine
all such cost functions in a soft-min manner into one universal cost

vk+1(y,w) = − log
m
∑

i=1

wi e−vi
k+1

(y), (10)

where w is a non-negative vector that indicates each component’s
influence. We show in Appendix A.2 that we can phrase a new op-
timal control problem satisfying Equation 4 by having a combined
tracking cost

ck(x,w) = log

m
∑

i=1

αi
k(x,w) ec

i
k
(x), (11)

where the component costs cik are weighted by factors

αi
k(x,w) =

wie−vi
k
(x)

∑m
j=1 w

je−v
j
k
(x)

, (12)

which favor the cheaper cost-to-go. Later we use this cost function
to measure the performance of our controllers.

The solution to this composite problem follows straightforwardly
from the linearity of the Bellman equation [Todorov 2009a]. From
there, we find that the optimal probability distribution is a convex
combination of the individual optimal distributions

πk+1( · | x,w ) =
m
∑

i=1

βi
k(x,w)πi

k+1( · | x ), (13)

where each individual solution πi
k+1 is weighted by the factor

βi
k(x,w) =

wi ec
i
k
(x)−vi

k
(x)

∑m
j=1 w

j ec
j
k
(x)−v

j
k
(x)

. (14)

For our particular tracking problem, this implies that the optimal
state transition is described by a mixture of Gaussian distributions.
Unlike the single-tracking case where the mean and the maximum
of a Gaussian solution obviously coincide, an optimal control law
like Equation 9b is not well-defined for this mixture. This poses
a problem because we require a concrete control signal to drive a
deterministic simulation system.

For this composite problem, we reason that the correct actuations
correspond to those of the maximum of the probability distribu-
tion. In the common situation where we combine vastly dissimilar
components, this strategy can reduce the crosstalk between com-
peting components and thus deliver coherent actions. We therefore
proceed to compute the control law uk(x,w) by solving the non-
convex optimization problem

minimize − log πk+1(y | x,w )

over all y,u

subject to y = x+ ha(x) + hB(x)u.

(15)

This is an unwieldy computation in general, so we choose to ap-
proximate the solution for our problem with Gaussian distributions.
If the step h is small, we can assume a locally convex distribution
near the expected state

ỹk(x,w) = x+ ha(x) + hB(x) ũk(x,w) (16)

arising from the expected control

ũk(x,w) =
m
∑

i=1

βi
k(x,w)ui

k(x). (17)

This state serves as an initial point about which we compute the
gradient of the objective function within the control subspace. Dif-
ferentiation gives the gradient vector

λk(x,w) =
m
∑

i=1

αi
k+1(ỹk,w)λi

k(x,w), (18)

where each component i contributes the vector

λi
k(x,w) = Ri

k(x)
(

ũk(x,w)− ui
k(x)

)

. (19)

Meanwhile the Hessian at the expected state is

Λk(x,w) = λk(x,w)Tλk(x,w)

+
m
∑

i=1

αi
k+1(ỹk,w)

(

Ri
k(x)− λ

i
k(x,w)λi

k(x,w)T
)

. (20)

In the case that this matrix is not positive definite, one can simply
perform a gradient descent until ũ enters a locally convex region.
At this point, Newton’s method gives an approximate solution

u(1)(x,w) = ũk(x,w)−Λk(x,w)−1λk(x,w). (21)

Observe that in the case m = 1, we conveniently recover the linear
quadratic regulator of Equation 9b. In fact, this solution reduces
to the continuous-time control law [Todorov 2009a; da Silva et al.
2009] as the time step h vanishes.

We can optionally repeat this process as in sequential quadratic pro-
gramming (SQP) to find more accurate solutions u(2),u(3), . . . .
One simply replaces the initial guess ũ with the preceding iterate.
Usually it suffices to accept the control law in Equation 21, espe-
cially when the complexity of the whole control system becomes
an obstacle.

3.4 Constrained control

The optimization in Problem 15 may be adequate for typical loco-
motion skills, but it still relies on simplified passive dynamics in
Equation 2. Like the primitive control law of Equation 9b, this so-
lution admits unphysical contact forces such as those that result in
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ground penetration or sliding. One way to resolve such violations is
by introducing an intermediary stabilization stage that corrects the
control predictions [Muico et al. 2009]. We too take this approach,
but it might be prudent to take a step further and enforce some
additional safety measures that account for the deficiencies in our
model and ensure that the solution remain close to being physically
valid.

First, we enforce unilateral contact constraints on the predicted
contact forces χ. This typically involves a linear complementarity
condition

χ ≥ 0, Dr(q̃k+1) q̇ ≥ 0, (22a)

χT Dr(q̃k+1) q̇ = 0, (22b)

where q̇ ∈ R
n is the unknown generalized velocity vector, r mea-

sures the contact separation as a function of the pose, and Dr is the
Jacobian of r. The vector q̃k+1 ∈ R

n is an estimation of the next
pose, which we can infer from Equation 21. The complementarity
constraint of Equation 22b is a nonlinear relationship that is diffi-
cult to enforce. At this stage, we relax this condition by focusing
only on the inequality constraints. Since we are looking for a sim-
ple prediction, we can defer the enforcement of complementarity
later during the simulation stage.

Next, we constrain limbs that are not in contact with the ground.
As we anticipate certain contact configurations from the reference
trajectory, we can logically discern swinging limbs that may scuff
the ground too early. These events often lead to stumbling, so we
reduce them by introducing another linear constraint

0 ≤ diag(ρk) s(q̃k+1) + hDs(q̃k+1) q̇, (23)

where s consists of distances from some limbs to the ground as a

function of the pose, and the parameter ρjk provides damping that
controls the rate of separation for body point j. We found the fol-
lowing damping parameter to work well with many motions

ρjk = κ+ (1− κ) e−
1
2
(σ

j
k
/σ̄)2 , (24)

where σj
k is the current tangential speed of the point j, and κ =

0.1 and σ̄ = 1m/s. We can activate this constraint only when the
separation is small and when the separation velocity is attractive. In
this way, we reduce high-velocity impacts by adjusting torques to
keep such critical bodies afloat. This strategy is useful particularly
for a reduced-coordinate system like ours having no other special
treatment of its end-effectors.

Finally, we constrain allowed control forces. Although the KL di-
vergence provides a similar function, its role is primarily to regular-
ize the optimal control problem. As a result, the character may still
react too stiffly in the face of disturbances. We prevent this scenario
with torque limits.

Since we approximated the solution to Problem 15 with the com-
posite control law of Equation 21, we likewise approximate our

component

component

component

component

QP solver
contact 

adaptation
LCP solver

v

!

"

!

"

Fig. 2: Forward dynamics. At runtime, components contribute their cost-

to-go v to be combined in a quadratic program. The optimization computes

predicted controls to be adapted using a more precise contact model.

new problem as a quadratic program as follows.

minimize

[

τ
χ

]T
(

λk(xk,wk)−Λk(xk,wk) ũ(xk,wk)
)

+
1

2

[

τ
χ

]T

Λk(xk,wk)

[

τ
χ

]

over all q̇ ∈ R
n, τ ∈ R

n−6, χ ∈ R
nc

subject to M(qk+1) (q̇ − q̇k)

= f(qk+1, q̇k) +

[

0

τ

]

+Dr(qk+1)
Tχ,

0 ≤ χ,

0 ≤ Dr(qk+1) q̇,

0 ≤ diag(ρk) s(qk+1) + hDs(qk+1) q̇,

τlow ≤ τ ≤ τhigh. (25)

Here, the objective function is chosen such that its minimum coin-
cides with the unconstrained control law of Equation 21. The ma-
trix M is the inertia of the articulated body, while f consists of
fictitious forces, as well as gravitational and other external forces.
The result of this optimization replaces Equation 21, which in turn
replaces the primitive control law of Equation 9b. It serves as a
prediction that is subsequently adapted to account for actual con-
tact configurations, frictional constraints and disturbances.

3.5 Contact adaptation

The optimization in Problem 25 may be sufficient for undisturbed
locomotion where the character’s environment closely resembles
the conditions assumed by the prescribed trajectories. In this case,
no further corrections are needed, and we can simply evolve the
system forward using Euler’s method. When a more precise sim-
ulation dictates that contacts fully adhere to complementarity con-
straints in Equation 22b, it is possible to adapt our solution to meet
the requirement. We achieve this by constructing a linear controller
that embodies the response predicted by the quadratic program. We
follow the approach of previous work [Muico et al. 2009], whereby
a controller is fed into a linear complementarity problem (LCP)
solver to maintain some accelerations.

This contact adaptation stage and the subsequent simulation com-
pletes the computation of the forward dynamics. This whole pro-
cess is summarized in Figure 2.
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4. MOTION GRAPH

A crucial part of the composition process is identifying which tra-
jectories are composable. Given the cost-to-go function of every
component, we can, in principle, compose all possible controllers
at each instant to arrive at a highly coordinated action. Clearly this
approach is not practical, and we need to limit our search for com-
patible trajectories. Therefore we choose to connect our trajectories
in a graph. This structure allows us to manually specify neighbor-
ing motions and to anticipate various locomotion skills.

4.1 Multiplicity

Suppose a trajectory T connects to other trajectories S1, . . . ,Sm

as shown in Figure 3(a). The policy for T is a sequence of control
lawsu1, . . . ,uN that must be optimal in some sense for each of the
m possible outcomes. In order to encode such prospective motions
into this sequence of controllers, the information must propagate
backwards from all these outcomes. Rather than accumulate such
responses into a single control law given by Equation 9b, we can
instead solve for separate control laws corresponding to all the pos-
sible outcomes Si.

As shown in Figure 3(b), we propose that the trajectory T be copied
with multiplicity m, the number of outcomes branching from T.
Each copy is associated with the same original state trajectory, but
its control law is tailored for a specific future. At any point during
the simulation, the composite controller is therefore blending the
components that correspond to all possible outcomes presented by
a set of trajectories as shown in Figure 3(c). This allows a greater
continuity of trajectories and a significantly more flexible graph
structure. Furthermore, the composition reduces instabilities of the
single point of transition in standard switching graphs.

4.2 Dynamic programming

Now we use this organization to learn the controllers for each com-
ponent. As described in Section 3, these controllers depend entirely
on the parameters of cost-to-go functions vik. Using a dynamic pro-
gramming approach, we can in fact compute cost-to-go functions
for finite-horizon problems with linear dynamics. The solution to
these problems are given by algebraic Riccati equations (ARE) that
determine the gradient and Hessian of Equation 7. Refer to Ap-
pendix A.1 for a precise description of these equations.

In order to apply this method, it suffices that the flow a of the pas-
sive dynamics be approximated as a linear function of the state x,
and that the covariance matrix be fixed. In this way, we get a sim-
plified passive dynamics that is Gaussian

pk( · | x ) = N
(

ȳk +Ak (x− x̄k) , hBkR
−1BT

k

)

. (26)

Notice that this probability distribution is time-varying with pa-
rameters ȳk, Ak and Bk that depend on the choice of the finite
differencing scheme. To compute these parameters, suppose we are
given the reference state x̄k and also a reference control ūk, which
we can obtain from the method of space-time optimization. We
can then construct the Taylor expansion of the simulation function
ψ(x,u) = x+ ha(x) + hB(x)u, which to first order is

ψ̃k(x,u) = ψ(x̄k, ūk) + Dxψ(x̄k, ūk) (x− x̄k)

+ Duψ(x̄k, ūk) (u− ūk) .

S1

S3

S2T

(a) Branching

S1

S3

S2T

multiplicity of T

(b) Duplication

components

T1

T2

T3

(c) Composition

Fig. 3: Graph construction. (a) A trajectory T connects to 3 prospective

trajectories. (b) A trajectory T has multiplicity 3, and each of the three

copies will have a different policy synthesized depending on its outcome.

(c) At runtime, a composite controller with a working set of 3 trajectories

is actually evaluating many components depending on the total number of

possible outcomes.

Now, the mean of the passive distribution p is approximately the

linear function ψ̃k(x,0), from which we identify the coefficients

ȳk = x̄k + ha(x̄k), (27a)

Ak = Dxψ(x̄k, ūk), (27b)

Bk = B(x̄k). (27c)

With these quantities, we can finally solve for the parameters of the
cost-to-go using the ARE.

Because of the simplification of the passive dynamics, this solution
is valid only locally around the reference trajectory. Since our goal
is mainly to reproduce this fixed sequence of states, we find that
such a crude approximation can adequately capture the dynamics
along the path. Still, our control system must provide better cover-
age for real-world operation, and subsequently we explore dynamic
programming in the composite setting.

4.3 Network dynamic programming

As our mechanical system is nonlinear and our trajectories inter-
connected in a cyclic graph, our main problem is ideally a nonlinear
infinite-horizon problem. We resort to finding an approximation to
the cost-to-go function by using a novel iterative process.

Suppose that for each component i of a trajectory T, we have a
terminal cost function viN that is quadratic. If we linearize the dy-
namics along the trajectory using Equation 26, then we can solve
the Riccati equations backwards from the terminal state and obtain
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a sequence of cost-to-go functions for component i. The problem
remains in finding an appropriate function viN .

Since the component i is not actually terminal but is connected to
trajectory Si, we reason that viN is the cost-to-go function at the
initial state of Si. Note that this outcome trajectory itself has a non-
trivial multiplicity, as it is associated with multiple cost-to-go func-
tions corresponding to its own outcomes. Consequently, we com-
bine these functions at this nexus in order to determine an effective
cost-to-go viN . Just as we found a quadratic approximation of the
mixture distribution in Problem 15, we can likewise find a quadratic
approximation to Equation 10. To second order, the terminal cost-
to-go at the state x̄N is given by

v̄iN = v1(x̄N ,w), (28a)

giN =

mi
∑

j=1

αj
1(x̄N ,w)∇vj1(x̄N ), (28b)

Hi
N = giNg

i
N

T (28c)

+

mi
∑

j=1

αj
1(x̄N ,w)

(

H
j
1 −∇vj1(x̄N )∇vj1(x̄N )T

)

,

where the index j refers to one of the mi components of Si. Typ-
ically the trajectory Si is not aligned with T and must be trans-
formed prior to the evaluation of Equation 28. We discuss in Ap-
pendix B.1 that this is equivalent to transforming the parameters of
the cost-to-go function.

In the exceptional case that the effective Hessian Hi
N is not pos-

itive definite, one possible course of action is to simply ignore all
the outer product terms culpable in Equation 28c. Alternatively, the
more proper treatment would be to modify the reference states so
as to smoothy transition into the outcome Si. Since we are sim-
ply looking for a terminal cost, the former approach is sufficient to
handle malformed compositions.

Notice that it may be unnecessary to compute the biases v̄k of the
quadratic value functions, as these values can be absorbed into the
unspecified component weights w. In fact, these weights can be
manually assigned to indicate preferred trajectories or to suppress
certain behavior. As we will see in the next section, the arbitrariness
of such an assignment can be removed by applying a high-level
control scheme.

We summarize the dynamic programming algorithm below. By
completing this process, we have effectively created local con-
trollers whose futures are informed by the structure of the graph,
thus improving their performance over controllers constructed in-
dependently of the graph structure.

Algorithm 1 Dynamic programming

Initialize all biases, gradients and Hessians to zero.
repeat

for all trajectories T do
for all outcome trajectories S of T do

Evaluate the terminal parameters of Equation 28 using
the current parameters for S.
Solve ARE backwards along T, updating the control
laws of the component corresponding to S.

end for
end for

until the biases, gradients and Hessians converge.

4.4 Traversal

At runtime, we must quickly decide which trajectories are com-
posable. This is straightforward when we are already evaluating a
working set T = {T1,T2, . . . } consisting of trajectories that have
yet to be completely traversed. At some point, the control system
must choose a new set T once it exhausts the current one. One pos-
sibility is to choose all trajectories branching from the current set,
but this strategy would lead to an exponential growth of the set.
Instead we implement the following strategy.

(1) Find the component i with the largest factor αi evaluated at the
current state.

(2) Identify the trajectory T associated with the component i.

(3) Choose as the new working set all outcome trajectories
{S1,S2, . . . } branching from T.

Note that the working set of trajectories must satisfy the require-
ment that their control subspaces be identical at any instant. Since
we are treating contacts as actuators in our control prediction, this
requirement implies that the predicted contact configurations be
the same in any working set. For example, we cannot compose the
flight phase of a running trajectory with the double-support config-
uration of a standing trajectory. This restriction further limits our
choice of the working set during phase transitions.

5. HIGH-LEVEL CONTROL

The component weights w that determine the low-level dynamics
have thus far been arbitrary. At a higher-level, these weights pro-
vide extra degrees of freedom that we can exploit to perform high-
level tasks such as responding to user directives.

We augment the low-level state vector x with a task parameter θ
to form a higher-level state (x,θ). For example, the task can be
the desired speed or direction of motion. The state transitions are
assumed to be distributed as

xk+1 ∼ πk+1( · | xk,wk ), θk+1 ∼ Πk+1( · | xk,θk ),

where πk+1 is given by Equation 6, and Πk+1 describes the user
behavior. Then we can regardwk as a high-level action whose pol-
icy we must determine in order to achieve high-level control goals.

Consider the problem of finding an optimal policy w⋆
k that coin-

cides with the Bellman equation

Vk(xk,θk) = min
w

{

Ck(xk,θk) + KL [w ‖ w̄k ]

+ ρE [Vk+1(xk+1,θk+1)]
}

, (29)

where 0 ≤ ρ < 1 is a discount factor. Here the new cost function
Ck expresses the proximity of the system to achieving the high-
level task, while the KL divergence measures the deviation of the
action from some default distribution w̄k. For example, suppose
that w̄k is uniform. Then this cost term penalizes those strongly
biased weights w having low entropy. Such information-laden ac-
tions are seen to be aggressive, while disordered actions can be
regarded favorably as being effortless or lazy.

Due to the complexity of this high-level problem, we find it too ex-
pensive to seek a policyw⋆

k(x,θ) for every trajectory and at every
instant in time. Instead, we settle for solving a single time-invariant
policy weighing the outcomes S1, . . . ,Sl branching from a work-
ing set T of trajectories. That is, for every initial state (x1,θ1) that
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hinge joint

ball joint

u-joint

ball joint

ball joint

hinge joint

Fig. 4: Character model. Our character has 29 degrees of freedom and

consists of rigid body limbs that approximate the human body.

can be assumed at the beginning of a set T , we determine an action
w ∈ [0, 1]l that is operative during the entire traversal of T . Unlike
the low-level control problem, the set of initial states and the set of
possible actions are both discrete.

We use a standard policy iteration algorithm to solve this new prob-
lem. For each set T of composable trajectories and each initial con-
figuration (x1,θ1), we simulate forward using the current policy,
updating the cost-to-go V (x1,θ1). Then for each T and (x1,θ1),
we search for actions w that minimize the Bellman equation (29).
We iterate over this process until convergence.

6. RESULTS

We demonstrate our control framework in a number of experiments
that elucidate the concepts introduced throughout this paper. We
refer the reader to the companion video that further illustrates how
our controllers operate.

6.1 Implementation

Our bipedal model is an articulated system with n = 29 degrees
of freedom as shown in Figure 4. Its inertial parameters are simi-
lar to those found in earlier work [Muico et al. 2009]. Each of our
components tracks a walking motion derived from motion captures
recorded at 120Hz, and each nominal trajectory is processed to
compute smooth actuation torques of small magnitude while mini-
mizing deviation from captured data. The parameters for this learn-
ing stage are listed in Appendix B.2.

We wrote an LCP-based simulation system as described in recent
work [Muico et al. 2009]. We use a coefficient of restitution of 0.
The friction coefficient is 0.9, but we can vary it from 0.7 to 1.6
without compromising stability. For our control system, we use the
QL quadratic program solver [Schittkowski 2005].

6.2 Walking on a slope

Although a controller was designed to move on flat ground, it can
also perform the same task to some degree on unlevel ground. We
observed that a controller synthesized from a particular walking
trajectory can successfully descend slopes as low as −9◦ and as-
cend slopes as high as 4◦ in simulations lasting 5 s. We attempted
to improve this range by constructing controllers consisting of three

accumulated tracking penalty vs. slope angle
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(b)
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∀

!∀
!

(c)

Fig. 5: Slope tests. Three composite controllers (in blue) were repeatedly

measured against the same primitive walker (in red) in simulations lasting

5 s. Dashed segments indicate abrupt failures. (a) A controller constructed

from the original trajectory with a slightly faster variant mostly changed

the downhill behavior. (b) A controller constructed from the same walking

trajectory with a slightly slower variant extended the range in the uphill

region but made the downhill motion slightly less stable. (c) A controller

constructed from all three trajectories combined the attributes of the pre-

vious two controllers, revealing the faster trajectory in the downhill setting

and the slower trajectory in the uphill setting.

motions. Using the original trajectory, we performed spacetime op-
timization and generated two additional trajectories: one faster tra-
jectory extending 0.4m farther, and a slower trajectory receded by
0.2m.

First we constructed a composite controller with the original tra-
jectory and the faster trajectory and then ran 5-s simulations over a
range of angles along the direction of motion. Since we use the
same parameters to synthesize all our controllers, we can accu-
mulate the state costs from Equation 11 to evaluate their relative
performance. We found that the following expression is a suitable
measure of fidelity

1

N

N
∑

k=1

(

ck(xk, w̄k) +
1

2
uT

kRuk

)

. (30)

For the controller with the longer stride, we found that the perfor-
mance remained largely unchanged as indicated in Figure 5(a).

Next we did the same experiment with the slower trajectory. We
found that the downhill behavior of the composite controller was,
for the most part, the same as what we observed with the single-
trajectory controller. On the other hand, the slower motion mani-
fested itself as the character decreased its speed during its ascent.
As shown in Figure 5(b), this allowed the controller to succeed in
tests with slopes up to 8◦.
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accumulated tracking penalty vs. push magnitude
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Fig. 6: Pushing tests. Three composite controllers (in blue) were repeat-

edly subjected to single pushes and measured against the same primitive

controller (in red) in simulations lasting 10 s. Dashed segments indicate

abrupt failures. (a) A controller constructed from the original walking tra-

jectory with a slightly faster variant extended the range of success in the

forward direction. (b) A controller constructed from the original walking

trajectory and also a different, slower trajectory mostly changed the behav-

ior in the backward direction. (c) A controller constructed from all three

trajectories combined the advantages of the previous two controllers.

We found the same shift in its gait when we combined all three
motions into one controller as indicated in Figure 5(c). We deemed
this larger controller to be successful from a descent of about −9◦

to an ascent of about 8◦.

6.3 Pushing forward

We performed another experiment on three composite controllers
whose constituent motions are slightly faster than the previous
ones. First, a primitive controller was synthesized from a typical
walking motion, and we subjected it to an impulsive force at the
torso along the direction of motion. The force was applied smoothly
for a duration of about one half-cycle around the double-support
phase of the gait. We observed that the operating range for this
controller extends from −80N to 120N. Figure 6 shows the accu-
mulated tracking costs for this test.

Like the previous slope tests, we constructed a composite con-
troller consisting of a spacetime-optimized variant of the origi-
nal walker whose stride extends 0.2m farther. As evident in Fig-
ure 6(a), this controller outperformed the primitive controller and
withstood forces up to 150N.

Next we constructed a composite controller consisting of the origi-
nal trajectory and a different slow trajectory. In contrast to the pre-
vious controller, the slower motion seems to be useful mostly for

backwards pushing. While Figure 6(b) does betray the presence of
some instability and inconsistency in the backwards direction, the
resulting motion recovers with natural transitions, giving the ap-
pearance of the character to be significantly less stiff and more life-
like. Unfortunately, such vivid results are difficult to quantify.

Lastly, Figure 6(c) shows overall improvement in the character’s
robustness and clearly combines the advantages from the previous
two controllers.

6.4 Pushing sideways

To demonstrate the composability of extremely disparate motions,
we constructed a controller consisting of a forward walking trajec-
tory and a few sideways trajectories. Sideways walking is an un-
common means of human locomotion, and therefore we suppress
its influence in these experiments by diminishing its corresponding
weights w̄i by a factor of 10−4 relative to the dominant forward
motion. That is, we expect such behavior to emerge only when the
system state is compatible with sideways motion.

A key observation from the experiments is that even when a prim-
itive controller recovers from pushes it does so in a stiff, often un-
natural manner. The composite controller, in contrast, appears to
exert less energy as it makes additional steps to gradually absorb
the force of impact. The companion video shows that varying the
impact of force creates a variety of recoveries, many of which differ
from motions generated by either component. For example, differ-
ent recoveries extend foot differently depending on the sideways
momentum imposed by the impact; disturbances in the opposite di-
rection produce a natural leg crossover.

6.5 Grazing and scuffing

To some extent, all our examples have utilized the constraint mod-
ification of Equation 24. In order to demonstrate its necessity in
these tests, we subject a typical walking controller to various distur-
bances. In one particular experiment, we compared the constrained
controller to an unconstrained one as they both ascended slopes
of varying degree. The latter inferior controller is essentially given
by Equation 9b and is equivalent to that of prior work [Muico et al.
2009]. Whereas the unconstrained controller fails on a 4◦ slope, our
constrained controller succeeds on slopes twice as steep. In fact,
this mechanism has played a large role in the previous slope tests
involving composite controllers.

We also demonstrate the constraint’s utility in pushing tests. Run-
ning motions are especially difficult to stabilize on their own, and
disturbances can quickly compound such difficulties by interfering
with the rythm of the gait. We subject a runner to sideways push-
ing at regular intervals and compared this controller to an uncon-
strained one. We found that the constrained controller is capable
of absorbing forces up to 70N, while the other one quickly loses
balance upon such impacts.

6.6 Responding to user directives

External disturbances like those in the foregoing experiments are
effective in triggering the transitions present in the motion graph,
but such deliberate forces might not be typical of the character’s
intended operation. In our final experiment, we show that our con-
trollers can also respond to user directives. We assembled a few
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walking, turning, and sideways motions into a graph, and then we
optimized over the desired orientation of the character. In other
words, the user is in control of a single angle, regardless of the
character’s velocity. As before, we suppress the sideways motions,
so that the optimization favors the more natural locomotion skills.

An interesting observation is that decisions are not based solely on
the whim of the user. Rather, our control balances between what is
desired by the user and what is physically possible given the cur-
rent perturbation. So the character is not obligated to align with the
desired orientation if the current state strongly favors one of the
recovery components. Composition alleviates the many concerns
about transitioning from one control to another since increased ro-
bustness and larger range of transitions increases the overall cohe-
sion of the graph.

7. CONCLUSION

This paper presents a composable control system for three-
dimensional characters. Its ability to combine the best of each com-
ponent and even amplify performance of individual components
has produced physically based characters that are both lifelike and
robust. We contributed two methods to achieve this goal: (1) an
efficient and automatic method for blending components that in-
dependently track different trajectories, and (2) a continuous-blend
variation of the graph traversal strategy that allows us to transition
between controllers at any point in time. Our tracking system ex-
hibits some resilience and improves upon previous results in pub-
lished literature. Interestingly, we also discovered that resulting re-
coveries are natural and realistic even when they are quite different
from motions generated by any individual component.

Of course, this controller is only robust if it contains the right com-
bination of components that lead to a recovery. A control system
should consist of many candidate components to encourage smooth
transitions. Otherwise, one can observe instability from abrupt
switching between components. Currently, we assemble the ap-
propriate trajectories by hand and explicitly specify blend weights
leading to a default behavior. The problems of knowing which com-
ponents are required or how to reduce the number of components
are still unknown.

Another area of improvement is our high-level learning stage, a
process prone to the curse of dimensionality. While we showed
how we can steer the character by optimizing over a single scalar
variable, we find it more difficult to scale the problem to include
more task parameters. To overcome this difficulty, we believe it
is worthwhile to explore optimal control problems in a reduced-
dimensional setting like that used in recent work [Ye and Liu 2010].

Finally, we observed that composition does not perform as well on
varying terrain, even when it performs admirably on disturbances
from external pushes. Most likely, this is due to the fact that our
learning algorithm does not account for ground variation. Ideally
we should treat the orientation of the ground as unactuated degrees
of freedom, but our control system monitors only the current state
of the character. This suggests a next step for development: com-
posite control system that react to both changes in state and the
environment.
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APPENDIX

A. OPTIMALITY

A.1 Linear dynamics

Consider the quadratic cost-to-go function vk+1 in Equation 7 and
a quadratic cost function

ck(x) =
h

2
(x− x̄k)

T
Qk (x− x̄k) . (31)

Suppose the passive dynamics at the current stage is given by

pk( · | x ) = N
(

ȳk +Ak (x− x̄k) , hΣk

)

. (32)

Then vk statisfies the Bellman equation

vk(x) = ck(x) + min
π

{

KL [π ‖ pk ] + Ey∼π[vk+1(y)]
}

(33)

if and only if vk is the quadratic function

vk(x) = v̄k + gTk (x− x̄k) +
1

2
(x− x̄k)

THk (x− x̄k)

with coefficients given by

v̄k = vk+1(x̄k + ha(x̄k))−
h

2
uk(x̄k)

TRk(x̄k)uk(x̄k)

+
1

2
log det

(

R−1Rk(x̄k)
)

, (34a)

gk = AT

k

(

H−1
k+1 + hΣk

)−1
×

(

ȳk − x̄k+1 +H
−1
k+1gk+1

)

, (34b)

Hk = hQk +AT

k

(

H−1
k+1 + hΣk

)−1
Ak. (34c)

A.2 Composite objective

Consider the cost function vk+1 given by Equation 10, and suppose
that the following Bellman equation holds

vk(x,w) = ck(x,w)

+ min
π

{

KL [π ‖ p ] + Ey∼π [vk+1(y,w)]
}

.
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From the linearity of the Bellman equation, it follows that

ck(x,w)− vk(x,w)

= log

∫

X

p(y | x ) e−vk+1(y,w) dy

= log

m
∑

i=1

wiec
i
k
(x)−vi

k
(x)

= log

∑m
i=1 w

iec
i
k
(x)−vi

k
(x)

∑m
j=1 w

je−v
j
k
(x)

+ log
m
∑

j=1

wje−v
j
k
(x)

= log

m
∑

i=1

αi
k(x,w) ec

i
k
(x) + log

m
∑

j=1

wje−v
j
k
(x).

Thus vk(x,w) = − log
∑m

i=1 w
ie−vi

k
(x) if and only if ck satisfies

ck(x,w) = log
m
∑

i=1

αi
k(x,w) ec

i
k
(x), (35)

where αi
k is given by Equation 12.

B. IMPLEMENTATION NOTES

B.1 Coordinate transformations

The value functions for each component are usually defined in
different frames of reference, so we must transform them in or-
der to solve the composite problem. Consider a transformation
f : R

2n → R
2n that maps a state ξ in a component reference

frame to its corresponding state x in the global reference frame.
We consider mappings consisting of translations, rotations and re-
flections. For the cost function in the component frame,

v(ξ) = v̄ + gT(ξ − ξ̄) +
1

2
(ξ − ξ̄)TH (ξ − ξ̄),

the corresponding cost function in the global frame is given by

v(x) = v̄ +
(

Df(ξ̄)g
)T (

x− f(ξ̄)
)

+
1

2

(

x− f(ξ̄)
)T

Df(ξ̄)H Df(ξ̄)T
(

x− f(ξ̄)
)

. (36)

B.2 Learning parameters

Table I. : Objective weights

feature DOF Qcoord Qvel R (×10−5)

height 1 10 0.32 –

location 2 4.0 0.30 –

orientation 3 12 0.22 –

trunk joint 3 12 0.18 0.40
ankle joint 2 5.0 0.20 0.30
knee joint 1 8.0 0.12 0.30

hip joint 3 12 0.15 0.30
shoulder joint 3 6.0 0.075 0.40

elbow joint 1 4.0 0.050 0.50
heel position 3 – – 0.040
toe position 3 – – 0.040
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