
Multiresolution Video

Adam Finkelstein Charles E. Jacobs David H. Salesin

Department of Computer Science and Engineering�

University of Washington

Abstract

We present a new representation for time-varying image data that
allows for varying—and arbitrarily high—spatial and temporal res-
olutions in different parts of a video sequence. The representation,
called multiresolution video, is based on a sparse, hierarchical en-
coding of the video data. We describe a number of operations for
creating, viewing, and editing multiresolution sequences. These op-
erations support a variety of applications: multiresolution playback,
including motion-blurred “fast-forward” and “reverse”; constant-
speed display; enhanced video scrubbing; and “video clip-art” edit-
ing and compositing. The multiresolution representation requires
little storage overhead, and the algorithms using the representation
are both simple and efficient.

CR Categories and Subject Descriptors:
H.5.1 [Information Interfaces]: Multimedia Information Systems—video
I.3.3 [Computer Graphics]: Picture/Image Generation—display algorithms
I.4.10 [Image Processing]: Image Representation—hierarchical

Additional Keywords: clip-art, compositing, image pyramids, multigrid
methods, multimedia, scientific visualization, video editing

1 Introduction

Scientists often run physical simulations of time-varying data in
which different parts of the simulation are performed at differing
spatial and temporal resolutions. For example, in a simulation of
the air flow about an airplane wing, it is useful to run the slowly-
varying parts of the simulation—generally, the portion of space fur-
ther from the wing—at a fairly coarse scale, both spatially and tem-
porally, while running the more complex parts—say, the region of
turbulence just aft of the wing—at a much higher resolution. The
multigrid techniques used frequently for solving large-scale prob-
lems in physics [15], astronomy [16], meteorology [1], and applied
mathematics [8] are a common example of this kind of computation.

In this paper, we present a new approach for representing the time-
varying data produced by such algorithms, called multiresolution
video. The multiresolution video representation provides a means
of capturing time-varying image data produced at multiple scales,
both spatially and temporally. In addition, we introduce efficient al-
gorithms for viewing multiresolution video at arbitrary scales and
speeds. For example, in a sequence depicting the flow of air about

� For project updates, addresses, and email see our Web page:
http://www.cs.washington.edu/research/graphics/mrvideo

a wing, a user can interactively zoom in on an area of relative tur-
bulence, computed at an enhanced spatial resolution. Analogously,
fast-changing components in a scene can be represented and viewed
at a higher temporal resolution, allowing, for example, a propeller
blade to be represented and viewed in slow motion.

Moreover, we have found that multiresolution video has applica-
tions that are useful even for conventional uniresolution video.
First, the representation facilitates a variety of viewing applications,
such as multiresolution playback, including motion-blurred “fast-
forward” and “reverse”; constant-speed viewing of video over a
network with varying throughput; and an enhanced form of video
“scrubbing.” The representation also provides a controlled degree
of lossy compression, particularly in areas of the video that change
little from frame to frame. Finally, the representation supports the
assembly of complex multiresolution videos from either uniresolu-
tion or multiresolution “video clip-art” elements.

1.1 Related work

The multiresolution video representation described in this paper
generalizes some of the multiresolution representations that have
previously been proposed for images, such as “image pyramids”
[18] and “MIP maps” [19]. It is also similar in spirit to the wavelet-
based representations for images described by Bermanet al. [2] and
Perlin and Velho [11]. In particular, like these latter works, our rep-
resentation is sparse, and it supports efficient compositing opera-
tions [12] for assembling complex frames from simpler elements.

Several commercially available video editing systems support many
of the operations described in this paper for uniresolution video. For
example, Adobe After Effects allows the user to view video seg-
ments at low resolution and to construct an edit list that is later ap-
plied to the high-resolution frames off-line. Discrete Logic’s Flame
and Flint systems also provide digital video compositing and many
other digital editing operations on videos of arbitrary resolution.
Swartz and Smith [17] describe a language for manipulation of
video segments in a resolution-independent fashion. However, the
input and output from all of these systems is uniresolution video.

Multiresolution video also allows the user to pan and zoom to ex-
plore a flat video environment. This style of interaction is simi-
lar in spirit to two image-based environments: Apple Computer’s
QuickTimeR VR [3] and the “plenoptic modeling” system of
McMillan and Bishop [9]. These methods provide an image-based
representation of an environment that surrounds the viewer. In sec-
tion Section 4.5, we describe how such methods can be combined
with multiresolution video to create a kind of “multiresolution video
QuickTime VR,” in which a viewer can investigate a panoramic en-
vironment by panning and zooming, with the environment changing
in time and having different amounts of detail in different locations.

While not the emphasis of this work, we also describe a simple
form of lossy compression suitable for multiresolution video. Video
compression is a heavily-studied area, with too many papers to ad-
equately survey here. MPEG [5] and QuickTime [13] are two in-
dustry standards. Other techniques based on multiscale transforms
[7, 10] might be adapted to work for multiresolution video.

1.2 Overview

The rest of this paper is organized as follows. Section 2 describes
our representation for multiresolution video, and Section 3 describes
how it is created and displayed. Section 4 describes a variety of ap-
plications of the multiresolution video representation, and Section 5
provides some concrete examples. Finally, Section 6 outlines some
areas for future work. The appendix provides additional low-level
operations useful for editing multiresolution video.

2 Representation

Our goals in designing a multiresolution video representation were
fivefold. We wanted it to:

� support varying spatial and temporal resolutions;

� require overall storage proportional only to the detail present
(with a small constant of proportionality);

� efficiently support a variety of primitive operations for creating,
viewing, and editing the video;

� permit lossy compression; and

� require only a small “working storage” overhead, so that video
could be streamed in from disk as it is needed.

The rest of this section describes the multiresolution video format
we chose and an analysis of the storage required.

2.1 The basic multiresolution video format

Perhaps the most obvious choice for a multiresolution video format
would be a sparse octree [14], whose three dimensions were used to
encode the two spatial directions and time. Indeed, such a represen-
tation was our first choice, but we found that it did not adequately ad-
dress a number of the goals enumerated above. Put briefly, the prob-
lem with such a representation is that it couples the dimensions of
space and time too tightly. In an octree structure, each node would
correspond to a “cube” with a fixed extent in space and time. Thus,
it would be efficient to rescale a video to, say, twice the spatial res-
olution only if it were equally rescaled in time—that is, played at
half the speed. We therefore needed to develop a representation that,
while still making it possible to take advantage of temporal and spa-
tial coherence, could couple space and time more loosely.

The structure we ultimately chose is a sparse binary tree of sparse
quadtrees. The binary tree encodes the flow of time, and each
quadtree encodes the spatial decomposition of a frame (Figure 1).

In the binary tree, called the Time Tree, each node corresponds to a
single image, or frame, of the video sequence at some temporal res-
olution. The leaves of the Time Tree correspond to the frames at the
highest temporal resolution for which information is present in the
video. Internal nodes of the Time Tree correspond to box-filtered av-
erages of their two children frames. Visually, these frames appear as
motion-blurred versions of their children. Note that this representa-
tion supports video sequences with varying degrees of temporal res-
olution simply by allowing the Time Tree to grow to different depths
in different parts of the sequence. For convenience, we will call the
child nodes of the Time Tree child time nodes and their parents par-
ent time nodes. We will use capitalized names for any time node.

Time Tree nodes are represented by the following data structure:

type TimeNode = record
frame: pointer to ImageNode
Half1, Half2: pointer to TimeNode

end record

[6,8][2,4][0,2] [4,6]

[5,6]

image trees

[4,5]

time}}} } }

1 2 3 4 5 6 70 8

[0,8]

[0,4] [4,8]

Figure 1 Binary tree of quadtrees.

Each node of the Time Tree points to a sparse quadtree, called an
image tree, which represents the multiresolution image content of
a single frame of the video sequence. In analogy to the Time Tree,
leaves of an image tree correspond to pixels at the highest spatial
resolution for which information is present in the particular frame
being represented. Internal nodes of an image tree correspond, once
again, to box-filtered averages of their children—in this case, to a
2�2 block of higher-resolution pixels. Note that the image tree sup-
ports varying spatial resolution simply by allowing the quadtree to
reach different depths in different parts of the frame. We will call the
child nodes of an image treechild image nodes and their parents par-
ent image nodes. In our pseudocode we will use lower-case names
for any image node. Figure 4 shows a frame from a video clip, where
leaf nodes of the image tree are boxed in yellow.

Specifically, here is how we encode each node in the image tree:

type ImageNode = record
type: TREE j COLOR
uplink: UpLinkInfo
union

tree: pointer to ImageSubtree
color: PixelRGBA

end union
end record

type ImageSubtree = record
avgcolor: PixelRGBA
child[0..1, 0..1]: array of ImageNode

end record

Each subtree contains both the average color for a region of the im-
age, stored as an RGBA pixel, and also image nodes for the four
quadrants of that region. We compute the average of the pixels as
if each color channel were premultiplied by alpha—as prescribed
by Porter and Duff [12]—but we do not actually represent the pix-
els that way in our image nodes, in order to preserve color fidelity
in highly-transparent regions. Each image node generally contains a
pointer to a subtree for each quadrant. However, if a given quadrant
only has a single pixel’s worth of data, then the color of the pixel is
stored in the node directly, in place of the pointer. (This trick works
nicely, since an RGBA pixel value is represented in our system with
4 bytes, the same amount of space as a pointer. Packing the pixel in-

(a) Time tree (b) Image tree

ctime child child image node

P time parent p

Cchild time node

parent time node parent image node

Figure 2 Parent-child relationships in the trees.

formation into the pointer space allows us to save a large amount
of memory that we might otherwise waste on null pointers at the
leaves.) There is also an uplink field, whose use we will discuss in
the next section.

There is an additional relationship between image nodes that is not
represented explicitly in the structure, but which is nevertheless cru-
cial to our algorithms. As described already, there are many differ-
ent image nodes that correspond to the same region of space, each
hanging from a different time node. We will call any two such image
nodes time-relatives. In particular, for a given image nodec hanging
from a time node C, we will call the time-relative p hanging from the
parent time node P of C the time-parent of c. In this case, the image
node c is also called the time-child of p. (See Figure 2.) Note that a
given node does not necessarily have a time-parent or a time-child,
as the quadtree structures hanging from P and C may differ.

2.2 Temporal coherence

Recall that the representation of each frame exploits spatial coher-
ence by pruning the image tree at nodes for which the image content
is nearly constant. We can take advantage of temporal coherence in
a similar way, even in regions that are spatially complex.

Consider an image node p and its two time-children c1 and c2.
Whenever the images in c1 and c2 are similar to each other, the im-
age in p will be similar to these images as well. Rather than triplicat-
ing the pixels in all three places, we can instead just store the image
in the time-parent p and allow c1 and c2 to point to this image di-
rectly. We call such pointers up-links. See Figure 3 for a schematic
example. Figure 5 shows a frame from a multiresolution video clip
in which all up-link regions (which cover most of the frame) are
shaded red.

The up-links are described by the following structure:

type UpLinkInfo = record
linked: Boolean
type: FIRST j MIDDLE j LAST

end record

The linked field tells whether or not there is an up-link. There is also
a type field, which we will describe in Section 3.2.

2.3 Storage complexity

Now that we have defined the multiresolution video data structure,
we can analyze its storage cost. The type and uplink fields require
very few bits, and in practice these two fields for all four children
may be bundled together in a single 4-byte field in theImageSubtree
structure. Thus, each ImageSubtree contains 4 bytes (for the aver-
age color), 4�4 bytes (for the children), and 4 bytes (for the flags),
yielding a total of 24 bytes. Each leaf node of an image tree com-
prises 4 pixels, and there are 4/3 as many total nodes in these trees

example up-links

Figure 3 Exploiting temporal coherence. The quadrants containing
the Luxo lamp are not duplicated in the lower six frames of the Time
Tree. Instead, the right two quadrants in all six frames contain “up-
links” to the corresponding quadrants in the Time Tree’s root.

as there are leaves. Assuming P pixels per time node, we get:

24 bytes
node

�
4 nodes
3 leaf

�
1 leaves
4 pixels

�
P pixels

time node
=

8P bytes
time node

Furthermore, there are twice as many time nodes as there are leaves
(or frames) in the Time Tree, so the storage complexity is really 16P
bytes/frame. In addition, each TimeNode contains 3�4 = 12 bytes,
and there are twice as many nodes in this tree as there are leaves.
Thus, the Time Tree needs an additional 24 bytes/frame. However,
since 16P is generally much larger than 24, we can ignore the latter
term in the analysis. The overall storage is therefore 16 bytes/pixel.

In the worst case—a complete tree with no up-links—we have as
many pixels in the tree as in the original image. Thus, the tree takes 4
times as much space as required by just the highest-resolution pixel
information alone. It is worthwhile to compare this overhead with
the cost of directly storing the same set of time- and space-averaged
frames, without allowing any space for pointers or flags. Such a
structure would essentially involve storing all powers-of-two time
and spatial scales of each image, requiring a storage overhead of
8=3. Thus, our storage overhead of 4 is only slightly larger than the
minimum overhead required. However, as will be described in Sec-
tion 3.1, the very set of pointers that makes our worst-case overhead
larger also permits both lossless and lossy compression by taking ad-
vantage of coherence in space and time.

Figure 4 Quadtree. Figure 5 Up-links.

2.4 Working storage

One of the goals of our representation was to require a small “work-
ing storage” overhead, so that video could be streamed in from disk
only as it is needed. This feature is crucial for viewing very large se-
quences, as well as for the editing operations we describe in the ap-
pendix. As we will see when we discuss these operations in detail,
this goal is easily addressed by keeping resident in memory just the
image trees that are currently being displayed or edited, along with
all of their time-ancestors. For a video clip with 2k frames, the num-
ber of time-ancestors required is at most k.

2.5 Comparison with wavelets

Wavelets have been successfully used to represent multiresolution
functions in a variety of domains. Our first impulse—and, in fact,
our first implementation—was to use a 3D wavelet representation
for the video. However, we eventually moved to the data structure
described in this section for several reasons. First, the box basis
functions we use now are simpler, making it faster to render a frame
of video. Second, wavelet coefficients require increasing numbers
of bits at finer levels of detail, so we had to use floating-point num-
bers (rather than bytes) to store the color channels—a factor of four
expansion. Third, the wavelets we were using (nonstandard tensor-
product Haar wavelets) made it difficult to separate the spatial and
temporal dimensions; thus, it was expensive to extract a frame in
which the time and space dimensions were scaled differently. While
it is possible to construct a wavelet basis that avoids this problem,
we were not able to find an efficient compositing algorithm for it. Fi-
nally, the current representation takes advantage of areas of a video
sequence that have temporal coherence but no spatial coherence; the
wavelets we used were unable to compress such sequences.

3 Basic algorithms

In this section we describe algorithms for creating and displaying
multiresolution video. Algorithms for translating, scaling, and com-
positing multiresolution video clips appear in the appendix.

3.1 Creating multiresolution video

We begin with the problem of creating multiresolution video from
conventional uniresolution video. We break this process into two
parts: creating the individual frames, and linking them together into
a multiresolution video sequence.

3.1.1 Creating the individual frames

Given a 2`�2` source frame S we construct an image tree by calling
the following function with arguments (S, 0, 0, `):

function CreateFrame(S, x, y, `): returns ImageNode
if ` = 0 then return ImageNode(COLOR, S[x, y])
for each i, j 2 f0, 1g do

x0 2x + i
y0 2y + j
subtree.child[i, j] CreateFrame(S, x0, y0, `� 1)

end for
subtree.avgcolor AverageChildren(subtree.child[0..1, 0..1])
return ImageNode(TREE, subtree)

end function

Image trees built from images that are not of dimension 2`�2` are
implicitly padded with transparent, black pixels.

The quadtree constructed by CreateFrame() is complete. The next
step is to take advantage of spatial coherence by culling redundant

information from the tree. The following function recursively tra-
verses the image tree p and prunes any subtree whose colors differ
from its average color a by less than a threshold �:

function PruneTree(p, a, �): returns Boolean
if p.type = COLOR then return (ColorDiff(p.color, a) � �)
prune TRUE
for each i, j 2 f0, 1g do

prune prune and PruneTree(p.child[i, j], p.avgcolor, �)
end for
if prune = FALSE then return FALSE
free(p.child[0..1, 0..1])
p ImageNode(COLOR, p.avgcolor)
return TRUE

end function

Choosing � = 0 yields lossless compression, whereas using � > 0
permits an arbitrary degree of lossy compression at the expense of
image degradation. The function ColorDiff() measures the distance
between two colors (r1, g1, b1, a1) and (r2, g2, b2, a2). We chose to
measure the distance as the sum of the distances between color com-
ponents, weighted by their luminance values:

0.299jr1a1 � r2a2j + 0.587jg1a1 � g2a2j + 0.114jb1a1 � b2a2j

In practice, the source material may be multiresolution in nature.
For example, the results of some of the scientific simulations de-
scribed in Section 5 were produced via adaptive refinement. It is
easy to modify the function CreateFrame() to sample source mate-
rial at different levels of detail in different parts of a frame. In this
case, the recursive function descends to varying depths, depending
on the amount of detail present in the source material.

3.1.2 Linking the frames together

The next step is to link all the frames together into the Time Tree.
We first insert all the image trees at the leaves of the Time Tree, and
then compute all of the internal nodes by averaging pairs of frames
in a depth-first recursion. Now that the complete Time Tree is built,
the following two procedures discover and create all the up-links:

procedure MakeMRVideo(Timetree, �):
for each Half 2 fHalf1, Half2g of Timetree do

if Half 6= NULL then
MakeUpLinks(Half.frame, Timetree.frame, �)
MakeMRVideo(Half, �)

end if
end for

end procedure

function MakeUpLinks(p, c, �): returns Boolean
c.uplink.linked FALSE
if p = NULL or p.type 6= c.type then

return FALSE
else if c.type = COLOR then

c.uplink.linked (ColorDiff(p.color, c.color) � �)
return c.uplink.linked

end if
link TRUE

for each i, j 2 f0, 1g do
link (link and MakeUpLinks(p.child[i, j], c.child[i, j]), �)

end for
if link = FALSE then return FALSE
free(c.tree)
c.tree p.tree
c.uplink.linked TRUE
return TRUE

end function

The MakeMRVideo() routine works by finding all of the up-links
between the root of the Time Tree and its two child time nodes. The
routine then calls itself recursively to find up-links between these
children and their descendents in time. Because of the preorder re-
cursion, up-links may actually point to any time-ancestor, not just a
time-parent. (See Figure 3.)

The MakeUpLinks() function attempts to create an up-link from a
time-child c to its time-parent p. An up-link is created if the two
nodes are both subtrees with identical structure, and all of their de-
scendent nodes are sufficiently close in color. The function returns
TRUE if such an up-link is created. It also returns TRUE if the two
nodes are colors and the two colors are sufficiently close; it further-
more sets the child node’s uplink flag, which is used to optimize the
display operation in the following section.

After executing MakeMRVideo(), we traverse the entire Time Tree
in a separate pass that sets the type field of the uplink structure,
whose use is explained in the following section.

3.2 Display

Drawing a frame at an arbitrary power-of-two spatial or tempo-
ral resolution is simple. Displaying at a particular temporal resolu-
tion involves drawing frames at the corresponding level in the Time
Tree. Displaying at a particular spatial resolution involves drawing
the pixels situated at the corresponding level in the image trees.

The up-links that were used in the previous section to optimize stor-
age can also play a role in optimizing the performance of the display
routine when playing successive frames. We would like to avoid re-
freshing any portion of a frame that is not changing in time; the up-
links provide exactly the information we need. In particular, if we
have just displayed frame t, then we do not need to render portions
of frame t + 1 (at the same time level) that share the same up-links.
We will use the type field in the UpLinkInfo structure to specify the
first and last up-links of a sequence of frames that all share the same
parent data. When playing video forward, we do not need to render
any region that is pointed to by an up-link, unless it is a FIRST up-
link. Conversely, if we are playing backward, we only need to render
LAST up-links.

To render the image content c of a single multiresolution video
frame at a spatial resolution 2`�2`, we can call the following re-
cursive routine, passing it the root c of an image tree and other pa-
rameters (0, 0, `):

procedure DrawImage(c, x, y, `):
if c.uplink.linked and c.uplink.type 6= FIRST then return
if c.type = COLOR then

DrawSquare(x, y, 2`, c.color)
else if ` = 0 then

DrawPixel(x, y, c.avgcolor)
else

for each i, j 2 f0, 1g do
DrawImage(c.child[i, j], 2x + i, 2y + j, `� 1)

end for
end if

end procedure

The routine DrawSquare() renders a square at the given location and
size in our application window, while DrawPixel() renders a single
pixel. Note that DrawImage() assumes that the video is being played
in the forward direction from beginning to end. A routine to play the
video in reverse would have to useLAST in place of FIRST in the first
line. A routine to display a single frame that does not immediately
follow the previously displayed frame (for example, the first frame
to be played) would have to omit the first line of code entirely.

One further optimization is that we actually keep track of the bound-
ing box of non-transparent pixels in each frame. We intersect this
bounding box with the rectangle containing the visible portion of the
frame on the screen, and only draw this intersection. Thus, if only a
small portion of the frame is visible, we only draw that portion.

The DrawImage() routine takes time proportional to the number of
squares that are drawn, assuming that the time to draw a square is
constant.

Fractional-level zoom

The DrawImage() routine as described displays multiresolution
video at any power-of-two spatial resolution. Berman et al. [2] de-
scribe a simple method to allow users to view multiresolution im-
ages at any arbitrary scale. We have adapted their method to work
for multiresolution video. The basic idea is that if we want to dis-
play a frame of video at a fractional level between integer levels`�1
and `, we select pixels from the image tree as though we were draw-
ing a 2`�2` image, and then display those pixels at locations appro-
priate to the fractional level. So if a pixel would be drawn at location
(x, y) in a 2`�2` image, then it would be drawn at location (x0, y0)
in an M�M image, where

x0 = bxM=2`c y0 = byM=2`c

Furthermore, as with MIP maps [19], we interpolate between the
colors appearing at levels ` and ` � 1 in the image tree in order to
reduce point-sampling artifacts. Drawing at this fractional level is
only slightly more expensive than drawing pixels at level`.

Similarly, even though we are selecting frames from the Time Tree
corresponding to power-of-two intervals of time, we can achieve
“fractional rates” through the video, as will be described in Sec-
tion 4.2.

4 Applications

We now describe several applications of the primitive operations
presented in the last section. These applications include mul-
tiresolution playback, with motion-blurred “fast-forward” and “re-
verse”; constant perceived-speed playback; enhanced video scrub-
bing; “video clip-art” editing and compositing; and “multiresolution
video QuickTime VR.”

These applications of multiresolution video serve as “tools” that
can be assembled in various combinations into higher-level applica-
tions. We describe our prototype multiresolution video editing and
viewing application in Section 5.

4.1 Multiresolution playback

The primary application of multiresolution video is to support play-
back at different temporal and spatial resolutions. To play a video
clip at any temporal resolution 2k and spatial resolution 2`�2` we
simply make successive calls to the procedure DrawImage(), pass-
ing it a series of nodes from level k of the Time Tree, as well as the
spatial level `. We can zoom in or out of the video by changing the
level `.

Similarly, for “motion-blurred” fast-forward and reverse, we use a
smaller time level k. In our implementation the motion-blur effect
comes from simple box filtering of adjacent frames. Though box-
filtering may not be ideal for creating high-quality animations, it
does appear to be adequate for searching through video.

Sometimes it may be desirable to have a limited degree of motion
blur, which might, for example, blur the action in just the first half

of the frame’s time interval. This kind of limited motion blur can be
implemented by descending one level deeper in the Time Tree, dis-
playing the first child time node rather than the fully motion-blurred
frame.

4.2 Constant perceived-speed playback

During video playback, it is useful to be able to maintain a con-
stant perceived speed, despite variations in the network throughput
or CPU availability. Multiresolution video provides two ways of ad-
justing the speed of play, which can be used to compensate for any
such variations in load. First, by rendering individual frames at a
finer or coarser spatial resolution, the application can adjust the ren-
dering time up or down. Second, by moving to higher or lower levels
in the Time Tree, the application can also adjust the perceived rate
at which each rendered frame advances through the video.

These two mechanisms can be traded off in order to achieve a con-
stant perceived speed. One possibility is to simply adjust the spa-
tial resolution to maintain a sufficiently high frame rate, say 30
frames/second. If, however, at some point the degradation in spa-
tial resolution becomes too objectionable (for instance, on account
of a large reduction in network bandwidth), then the application can
drop to a lower frame rate, say, 15 frames/second, and at the same
time move to the next higher level of motion-blurred frames in the
Time Tree. At this lower frame rate, the application has the liberty
to render more spatial detail, albeit at the cost of more blurred tem-
poral detail.

Note that by alternating between the display of frames at two adja-
cent levels in the Time Tree, we can play at arbitrary speeds, not just
those related by powers of two.

4.3 Scrubbing

Conventional broadcast-quality video editing systems allow a user
to search through a video interactively by using a slider or a knob, in
a process known as “scrubbing.” In such systems, frames are simply
dropped to achieve faster speeds through the video.

Multiresolution video supports a new kind of scrubbing that shows
all of the motion-blurred video as the user searches through it, rather
than dropping frames. In our implementation, the user interface pro-
vides a slider whose position corresponds to a position in the video
sequence. As the user moves the slider, frames from the video are
displayed. The temporal resolution of these frames is related to the
speed at which the slider is pulled: if the slider moves slowly, frames
of high temporal detail are displayed; if the slider moves quickly,
blurred frames are displayed.

The benefits of this approach are similar to those of the constant
perceived-speed playback mechanism described above. If the slider
is pulled quickly, then the application does not have an opportu-
nity to display many frames; instead, it can use the motion-blurred
frames, which move faster through the video sequence. In addition,
the motion blur may provide a useful visual cue to the speed at which
the video is being viewed.

4.4 Clip-art

In our multiresolution video editor, the user may load video frag-
ments, scale them, arrange them spatially with respect to each other,
and preview how they will look together. These input fragments may
be thought of as “video clip-art” in the sense that the user constructs
the final product as a composite of these elements.

Since the final composition can take a long time to construct, our ap-
plication provides a preview mode, which shows roughly how the fi-

Figure 6 The application.

nal product will appear. The preview may differ from the final com-
posite in that it performs compositing on the images currently be-
ing displayed rather than on the underlying video, which is poten-
tially represented at a much higher resolution. (The degree to which
the preview differs from the final composite corresponds exactly to
the degree to which the “compositing assumption” [12] is violated.)
When viewing the motion-blurred result of compositing two video
sequences, there is a similar difference between the preview pro-
vided in our editor and the actual result of the compositing opera-
tion.

Once the desired effect is achieved, the user can press a button that
translates, scales, and composites the various clip-art elements into
a single multiresolution video, employing the operations described
in the appendix. This video may be saved for subsequent viewing, or
it may be combined with other elements as clip-art to form an even
more elaborate multiresolution video.

4.5 Multiresolution video QuickTime VR

Apple Computer’s QuickTime VR (QTVR) allows a user to explore
an environment by looking from a fixed camera position out into a
virtual world in any direction. Chen [3] proposes a potential aug-
mentation of QTVR based on quadtrees that would provide two ben-
efits. First, it would allow users to zoom into areas where there is
more detail than in other areas. Second, it would reduce aliasing
when the user zooms out. We implemented this idea, and extended
it in the time dimension as well. Two simple modifications to mul-
tiresolution video were all that were required to achieve this “mul-
tiresolution video QuickTime VR” (MRVQTVR?!). First, we treat
the video frames as panoramic images, periodic in the x direction.
Second, we warp the displayed frames into cylindrical projections
based on the view direction.

5 Results

We have implemented all of the operations of the previous section
as part of a single prototype multiresolution video editing and view-
ing application, shown in Figure 6. Using the application, a user can
zoom in and out of a video either spatially or temporally, pan across
a scene, grab different video clips and move them around with re-
spect to each other, play forward or backward, and use several slid-
ers and dials to adjust the zoom factor, the speed of play through the
video, the desired frame rate, and the current position in time.

Figure 7 Julia set. Figure 8 Van Gogh room.

Figure 7 illustrates how multiresolution video can be used for vi-
sualization of multiresolution data, in this case, an animation of the
Julia set [4]. The data were generated procedurally, with higher spa-
tial resolution in places of higher detail, as described in Section 3.1.
The top three cells show increasing spatial detail, and the lower two
cells show increasing “motion blur.”

Figure 8 shows the result of arranging and compositing the many
“clip-art” elements from the work area of the application shown in
Figure 6 into a single multiresolution video, and then viewing this
video at different spatial and temporal resolutions. (Apologies to
Vincent Van Gogh.)

Figure 9 shows wind stress, the force exerted by wind over the
earth’s surface, measured for 2000 days over the Pacific Ocean
by the National Oceanographic and Atmospheric Administration
(NOAA). Wind stress is a vector quantity, which we encoded in
multiresolution video using hue for direction and value for magni-
tude. The left image shows a leaf time node (reflecting a single day’s
measurements), while the right image shows the root time node (re-
flecting the average wind stress over the 2000-day period). Note the
emergence of the dark continents in the right image, which reveals
the generally smaller magnitude of wind stress over land.

Figure 9 Wind stress over the Pacific Ocean.

Figure 10 Fluid dynamics simulation.

Figure 11 Astrophysical simulation of a galaxy.

The left side of Figure 10 shows a frame from a computational fluid
dynamics simulation in which two fluids (one heavy, one light) in-
teract in a closed tank. The simulation method [6] adaptively refines
its sample grid in regions where the function is spatially complex,
so the resolution of the data is higher at the interface between the
two fluids than it is in the large, constant regions containing just one
fluid. This refinement also occurs in time, providing higher temporal
resolution in areas that are changing rapidly. The right image shows
a close-up of the boxed region in the left image.

One more scientific visualization is shown in Figure 11. In this sim-
ulation, a galaxy is swept about a cluster of other astronomical bod-
ies and is eventually ripped apart by their gravitational forces. The
left image shows a close-up—late in the entire simulation— focused
on the galaxy. The right image shows an even closer view of a sin-
gle frame in which some whimsical high-resolution detail has been
added. (However, creating the entire video sequence at this level of
detail would be prohibitively expensive.)

Finally, Figure 12 shows a QTVR panoramic image that we have
adapted for use with multiresolution video QuickTime VR. Over the
picture frame on the wall we have composited the entire Van Gogh
room video from Figure 8.

Figure 12 Panoramic image for multiresolution video QuickTime VR, and two views in the scene.

Figure Video Disk Size Memory Size Unires Size

7 Julia set 23,049 58,926 67,109
8 Van Gogh 46,738 98,798 34,359,730
9 Wind stress 68,566 134,201 33,554

10 Fluids 40,091 106,745 536,870
11 Galaxy 37,222 315,098 137,438,953
12 Panorama 47,723 100,804 2,199,023,256

Table 1 Sizes (in Kb) of some example multiresolution video clips.

Table 1 reports information about the storage space for the exam-
ples in Figures 7–12. The “Disk Size” column gives the total amount
of space required to store the entire structure on disk, with aver-
ages and pointers included, after it has been compressed without loss
using a Lempel-Ziv compressor [20]. The next column, “Memory
Size” gives the total space required in memory, including all aver-
ages, pointers, and flags. The “Unires Size” column reports the total
space that would be required to store the raw RGBA pixel values, as-
suming the entire video had been expanded to its highest spatial and
temporal resolution present anywhere in the multiresolution video,
but not including spatial or temporal averages. With the exception
of the wind stress data, all of the video clips were smaller (in several
cases much, much smaller) in the multiresolution video format than
they would be in a uniresolution format, despite the overhead of the
spatial and temporal averages. The wind stress data was difficult to
consolidate because it has very little spatial or temporal coherence.
The galaxy data compressed very well on disk because all of the col-
ors stored in our structure (most of which were black) were selected
from a small palette of very few colors.

6 Future work

This investigation of multiresolution video suggests a number of ar-
eas for future work:

User-interface paradigms. As in the multiresolution image work of
Berman et al. [2], there is an important user-interface issue to be
addressed: How does the user know when there is more spatial or
temporal detail present in some part of the video? We have consid-
ered changing the cursor in areas where there is more spatial detail
present than is currently being displayed. Perhaps a timeline show-
ing a graph of the amount of temporal detail present in different parts
of the video would address the corresponding temporal problem.

Environment mapping. Multiresolution video could be used for en-
vironment maps that change in time, allowing, for example, the ren-
dering of a crystal glass, with animated objects in the environment
reflecting in the glass. One benefit of using a multiresolution rep-
resentation is that as the viewpoint and curvature of the glass sur-
face vary, an accurate rendering may require more or less informa-
tion from the surrounding environment.

Better compression. We currently require the up-links in our rep-
resentation to point to a time-ancestor, primarily because coher-
ence is fairly easy to discover this way. However, by relaxing this
restriction—that is, by allowing up-links to point to any other place

in the structure—we might be able to achieve much better compres-
sion, particularly for areas that have spatially repeating patterns. Un-
fortunately, finding the optimal set of up-links in this more general
setting could be very expensive.

Spatial and temporal antialiasing. So far we only have used box-
basis functions to represent the colors in multiresolution video.
When the user zooms in to view a region at a higher spatial resolu-
tion than is present in the frame, large blocky pixels are displayed.
Furthermore, if the user zooms in in time to view frames at higher
temporal detail than is present in the video sequence, the motion is
choppy. It would be interesting to explore the use of higher-order fil-
ters to produce smoother interpolations when the user views regions
at higher resolution than is represented.

Acknowledgements

We would like to thank David Herbstman and David Simons for
useful discussions during the initial phase of the project; Richard
Anderson, Ronen Barzel, and Richard Ladner for valuable advice
along the way; Neal Katz and Tom Quinn for the astronomical sim-
ulation; Randy LeVeque for the computational fluid dynamics; Xuri
Yu for the wind stress data; Sean Anderson for the bee model; and
Lightscape Technologies for the hotel lobby panorama.

This work was supported by an Alfred P. Sloan Research Fellow-
ship (BR-3495), an NSF Presidential Faculty Fellow award (CCR-
9553199), an ONR Young Investigator award (N00014-95-1-0728),
an Intel Graduate Research Fellowship, and industrial gifts from In-
terval, Microsoft, and Xerox.

A Algorithms for combining video clips

This appendix describes a set of linear-time algorithms for translat-
ing, scaling and compositing multiresolution video sequences. Such
operations are useful, for example, in the video clip-art application
described in Section 4.4.

A.1 Translating a video clip

When combining video sequences, the various elements may need
to be registered with respect to one another, requiring that they be
translated and scaled within their own coordinate frames.

The basic operations of translation and scaling are well-understood
for quadtrees [14]. However, as with drawing frames, we want these
operations to take advantage of the temporal coherence encoded in
the up-links of our data structure. For example, suppose we wanted
to translate the fan and lamp video of Figure 3 a bit to the left. The re-
gions of the video that contain the lamp should only be translated in
the root node of the Time Tree, and all the time-children must some-
how inherit that translation.

The following routine translates a multiresolution video clip, rooted
at time node C, by an amount (dx, dy) at level `tran to produce a re-
sulting Time Tree C 0. In order to handle up-links, the routine is also

passed the parent time node P of C, as well as the result P0 of (pre-
viously) translating P by the given amount. In the top-level call to
the procedure, the parameters P and P0 are passed as NULL, and the
Time Tree C 0 initially points to an image node containing just a sin-
gle clear pixel. As the procedure writes its result into C 0, the trans-
lated image tree is developed (and padded with clear pixels as it is
extended).

procedure TranslateTimeTree(C, C 0, P, P0, dx, dy, `tran):
TranslateFrame(C.frame, C 0.frame, P.frame, P0.frame, dx, dy, `tran, 0, 0, 0)
ComputeSpatialAverages(C 0.frame)
for each Half 2 fHalf1, Half2g of Timetree do

if C.Half 6= NULL then
TranslateTimeTree(C.Half , C 0.Half , C, C 0, dx, dy, `tran)

end if
end for

end procedure

The call to ComputeSpatialAverages() in the above procedure cal-
culates average colors in the internal nodes of the image tree, using
code similar to the CreateFrame() routine from Section 3.

The TranslateFrame() routine translates a single image tree c by an
amount (dx, dy) at level `tran. In general the translation can cause
large regions of constant color (leaves high in c) to be broken up
across many nodes in the resulting tree c0. To handle the up-links,
we must pass into the procedure the time-parent p of c, as well as
the result p0 of (previously) translating p. We also pass into the pro-
cedure arguments x, y and ` (initially all 0), which keep track of the
location and level of node c.

procedure TranslateFrame(c, c0, p, p0, dx, dy, `tran, x, y, `):
if c.Type = COLOR or c.uplink.linked or `tran = ` then

w 2`tran�`

r Rectangle(w � x + dx, w � y + dy, w, w, `tran)
PutRectInTree(c, c0, p0, r, 0, 0, 0)

else
for each i, j 2 f0, 1g do

TranslateFrame(c.child[i, j], c0, p.child[i, j], p0, dx, dy, `tran,
2x + i, 2y + j, ` + 1)

end for
end if

end procedure

The above procedure recursively descends image treec, pausing to
copy any “terminal” squares that it encounters as it goes. There are
three kinds of terminal squares: large regions of constant color, sub-
trees that hang from level `tran, and up-links. In the first two cases,
we copy the source from the original tree, whereas in the latter case
we copy from the time-parent. A square’s size and position are com-
bined in a single structure Rectangle(x, y, width, height, `r), the co-
ordinates of which are relative to the level `r. When the procedure
finds one of these squares, it copies it into the resulting tree using
the following procedure:

procedure PutRectInTree(c, c0, p0, r, x, y, `):
coverage CoverageType(r, x, y, `)
if coverage = COMPLETE then

if c.type = COLOR or not c.uplink.linked then
c0 c

else
c0 p0

c0.uplink.linked TRUE

end if
else if coverage = PARTIAL then

for each i, j 2 f0, 1g do
PutRectInTree(c, c0.child[i, j], p0.child[i, j], r, 2x + i, 2y + j, ` + 1)

end for
end if

end procedure

The above procedure recursively descends the result treec0 to find

those nodes that are completely covered by the given rectangle,
an approach reminiscent of Warnock’s algorithm [4]. The function
CoverageType(r, x, y, `) returns a code indicating whether rectan-
gle r completely covers, partially covers, or does not cover pixel
(x, y) at level `. For those nodes that are completely covered, Put-
RectInTree() copies either a color or a pointer, depending on the
type of node being copied. If the node is a color, then the color is
simply copied to its new position. If the node is a pointer but not an
up-link, the routine copies the pointer, which essentially moves an
entire subtree from the original tree. Finally, if the node is an up-
link, the routine copies the corresponding pointer from the (already
translated) time-parent p0. Thus, we have to descend the result tree
c0 and its time-parent p0 in lock-step in the recursive call.

As with DrawImage(), the complexity of TranslateFrame() is re-
lated to the number of nodes it copies using PutRectInTree(). The
latter procedure is dependent on the number of nodes it encounters
when copying a rectangle. Since the former call makes a single pass
over the source quadtreec, and the collective calls to the latter proce-
dure make a single pass over the resulting image treec0, the overall
complexity is proportional to the sum of the complexities ofc and c0.

A.2 Scaling a video clip

Here, we consider scaling a Time Tree by some integer factorssx in
the x direction and sy in y. Note that to shrink a video frame by any
power of two in both x and y we simply insert more image parent
nodes above the existing image root, filling in any new siblings with
“clear.” Conversely, to magnify a video frame by any power of two,
we simply scale all other videos down by that factor, since we are
only interested in their relative scales. Thus, scaling both x and y by
any power of two is essentially free, and we can really think of the
scales as being sx=2` and sy=2` for any (positive or negative) `. For
efficiency, it is best to divide both sx and sy by their greatest common
power-of-two divisor.

The algorithms for scaling multiresolution video are structurally
very similar to those for translation. The two main differences are
that they copy scaled (rather than translated) versions of the source
tree into the destination tree, and that they must descend down to the
leaves of the image trees. We omit the specific pseudocode for scal-
ing a video clip for lack of space. The time complexity of scaling is
the same as translation: linear in the size of the input and output.

A.3 Compositing two video clips

The final operation addressed in this appendix is compositing two
Time Trees A and B using the compositing operation op [12]:

function CompositeTimeTrees(A, B, op): returns TimeTree
for each Half 2 fHalf1, Half2g do

if A.Half = NULL and B.Half = NULL then
Result.Half NULL

else
Ahalf A.Half
Bhalf B.Half
if Ahalf = NULL then Ahalf NewUplinkNode(A) end if
if Bhalf = NULL then Bhalf NewUplinkNode(B) end if
Result.Half CompositeTimeTrees(Ahalf , Bhalf , op)

end if
end for
Result.frame CompositeFrames(A.frame, B.frame, FALSE, FALSE,

Result.Half1.frame, Result.Half2.frame, op)
return Result

end function

This function recursively traverses A and B in a bottom-up fashion,
compositing child time nodes first, then their parents. If one ofA or B
has more temporal resolution than the other, then a temporary node

is created by the functionNewUplinkNode(). Invoking this function
with the argument A creates a new TimeNode containing a single
ImageNode, each of whose four children is an up-link pointing to
its “time-parent” in A.

The following function works on two image trees a and b, taking
a pair of arguments aUp and bUp that are set to FALSE in the top-
level call; these flags are used to keep track of whether a and b are
really parts of a time-parent. The function also takes a pair of argu-
ments c1 and c2 that are the time-children of the resulting tree. In
order to pass c1 and c2, the CompositeTimeTrees() function must
have already computed these time-children, which is why it makes
a bottom-up traversal of the Time Tree.

function CompositeFrames(a, b, aUp, bUp, c1, c2, op): returns ImageNode
if a.uplink.linked then aUp TRUE end if
if b.uplink.linked then bUp TRUE end if
if aUp and bUp then return NULL end if
if a.Type = COLOR and b.Type = COLOR then

if c1 = NULL or c2 = NULL then
return ImageNode(COLOR, CompositePixels(a, b, op))

else
return ImageNode(COLOR, Average(c1.avgcolor, c2.avgcolor))

end if
end if
for each i, j 2 f0, 1g do

result.child[i, j] CompositeFrames(GC(a, i, j), GC(b, i, j),
aUp, bUp, GC(c1, i, j), GC(c2, i, j), op)

end for
result.avgcolor AverageChildColors(result)
return result

end function

We composite two image trees by traversing them recursively, in
lock-step, compositing any leaf nodes. Child colors are propagated
up to parents to construct internal averages. The helper function
GC() (for “GetChild” or “GetColor”) simply returns its argument
node if it is a color, or the requested child if it is a subtree.

There are two subtleties to this algorithm. The first is that when the
routine finds some region of the result for which both a and b are
up-links (or subtrees of up-links), then it can assume that the result
will be an up-link as well; in this case it simply returns NULL. Later,
after all of the frames in the Time Tree have been composited, we
invoke a simple function that traverses the Time Tree once, replac-
ing all NULL pointers with the appropriate up-link. (This assignment
cannot occur in CompositeFrames() because the nodes to which the
up-links will point have not been computed yet.) The second sub-
tlety is that if time-child c1 or c2 is NULL it means that the resulting
image node has no time-children: either the node is part of an im-
age tree that hangs from a leaf of the Time Tree, or its children are
up-links. In either case we perform the compositing operation. If, on
the other hand, c1 and c2 exist, then we are working on an internal
node in the Time Tree and we can simply average c1 and c2.

The compositing operation described in this section creates a new
Time Tree that uses up-links to take advantage of any temporal co-
herence in the resulting video. Since this resulting Time Tree is built
using two bottom-up traversals, the complexity of creating it is lin-
ear in the size of the input trees.

References

[1] J. Adams, R. Garcia, B. Gross, J. Hack, D. Haidvogel, and
V. Pizzo. Applications of multigrid software in the atmo-
spheric sciences. Monthly Weather Review, 120(7):1447–
1458, July 1992.

[2] Deborah F. Berman, Jason T. Bartell, and David H. Salesin.
Multiresolution painting and compositing. In Proceedings

of SIGGRAPH ’94, Computer Graphics Proceedings, Annual
Conference Series, pages 85–90, July 1994.

[3] Shenchang Eric Chen. Quicktime VR—an image-based ap-
proach to virtual environment navigation. In Proceedings
of SIGGRAPH 95, Computer Graphics Proceedings, Annual
Conference Series, pages 29–38, August 1995.

[4] James D. Foley, Andries van Dam, Steven K. Feiner, and
John F. Hughes. Computer Graphics: Principles and Practice.
Prentice-Hall, 1990.

[5] D. Le Gall. MPEG: A video compression standard for multi-
media applications. CACM, 34(4):46–58, April 1991.

[6] Randy LeVeque and Marsha Berger. AMRCLAW: adaptive
mesh refinement + CLAWPACK.
http://www.amath.washington.edu/˜rjl/amrclaw/.

[7] A. S. Lewis and G. Knowles. Video compression using 3D
wavelet transforms. Electronics Letters, 26(6):396–398, 15
March 1990.

[8] S. McCormick and U. Rude. A finite volume convergence the-
ory for the fast adaptive composite grid methods. Applied Nu-
merical Mathematics, 14(1–3):91–103, May 1994.

[9] Leonard McMillan and Gary Bishop. Plenoptic modeling: An
image-based rendering system. InProceedings of SIGGRAPH
95, Computer Graphics Proceedings, Annual Conference Se-
ries, pages 39–46, August 1995.

[10] Arun N. Netravali and Barry G. Haskell. Digital Pictures.
Plenum Press, New York, 1988.

[11] Ken Perlin and Luiz Velho. Live paint: Painting with proce-
dural multiscale textures. In Proceedings of SIGGRAPH 95,
Computer Graphics Proceedings, Annual Conference Series,
pages 153–160, August 1995.

[12] Thomas Porter and Tom Duff. Compositing digital images. In
Hank Christiansen, editor, Computer Graphics (SIGGRAPH
’84 Proceedings), volume 18, pages 253–259, July 1984.

[13] Steven Radecki. Multimedia With Quicktime. Academic
Press, 1993. ISBN 0-12-574750-0.

[14] Hanan Samet. Applications of Spatial Data Structures.
Addison-Wesley, Reading, Massachusetts, 1990.

[15] P. S. Sathyamurthy and S. V. Patankar. Block-correction-based
multigrid method for fluid flow problems. Numerical Heat
Transfer, Part B (Fundamentals), 25(4):375–94, June 1994.

[16] I. Suisalu and E. Saar. An adaptive multigrid solver for high-
resolution cosmological simulations. Monthly Notices of the
Royal Astronomical Society, 274(1):287–299, May 1995.

[17] Jonathan Swartz and Brian C. Smith. A resolution indepen-
dent video language. In ACM Multimedia 95, pages 179–188.
ACM, Addison-Wesley, November 1995.

[18] S. L. Tanimoto and Theo Pavlidis. A hierarchical data struc-
ture for picture processing. Computer Graphics and Image
Processing, 4(2):104–119, June 1975.

[19] Lance Williams. Pyramidal parametrics. In Computer Graph-
ics (SIGGRAPH ’83 Proceedings), volume 17, pages 1–11,
July 1983.

[20] L. Ziv and A. Lempel. A universal algorithm for sequential
data compression. IEEE Trans. Inform.Theory, Vol.IT-23, (3),
May 1977.

	Abstract
	Introduction
	Related work
	Overview

	Representation
	The basic multiresolution video format
	Temporal coherence
	Storage complexity
	Working storage
	Comparison with wavelets

	Basic algorithms
	Creating multiresolution video
	Creating the individual frames
	Linking the frames together

	Display

	Applications
	Multiresolution playback
	Constant perceived-speed playback
	Scrubbing
	Clip-art
	Multiresolution video QuickTime VR

	Results
	Future work
	Appendix: Algorithms for combining video clips
	Translating a video clip
	Scaling a video clip
	Compositing two video clips

	References
	FIGURES
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12

