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Figure 1. In this paper, we show how to reconstruct the shape of a scene, such as the two hands shown on the left, given a single
photograph of the scene under color-striped illumination shown at center. A novel dynamic programming method leads to the
geometric reconstruction on the right, shown as a shaded rendering from a new viewpoint.

Abstract

Thispaperpresentsa color structuredlight techniquefor
recoveringobjectshapefromoneor more images. Thetedh-
niqueworksby projectinga patternof stripesof alternating
colors and matcing the projectedcolor transitionswith ob-
servededgesin theimage. Thecorrespondenceroblemis
solvedusing a novel, multi-passdynamicprogrammingal-
gorithmthat eliminatesglobal smoothnesassumptiongnd
strict ordering constaints presentin previousformulations.
Theresultingappmoad is suitablefor geneating both high-
speedscansof moving objectswhenprojectinga singlestripe
pattern and high-resolutionscansof static sceneausing a
short sequencef time-shiftedstripe patterns. In the latter
case spacetimeanalysisis usedat ead sensompixel to ob-
taininter-framedepthlocalization. Resultsare demonstated
for a variety of complex scenes.

1 Intr oduction

Reconstructingaccurate shape from imagesis a long-
standingandchallengingoroblemin computewision. Struc-
turedlight techniquesnethodssimplify theproblemwith the
helpof controlledilluminationandcanyield excellentresults
in practice.Recently researcherbave focusedon speeding
up the acquisitionprocessby designingtechniqueghat re-
quire only a small numberof input images,in somecases
evenasingleimage. Indeed,beingableto captureaccurate

shapefrom a singleimageopensup the possibility of scan-
ning moving scenedy repeatinghe processatvideorates.

Customhardwaresolutionshave beendevelopedto solve
the problem of rapid shape capture, but enabling the
constructionof range ndersfrom more commonly avail-
able componentsnakes them more accessibldo otherre-
searchers. To this end, we focus on optical triangulation
methodswhich canbe developedwith a video projector(in
somecasesaslideprojector)anda camera.

In designingoptical triangulation systems,researchers
seekingo minimizethenumberof imagesequiredfor shape
capturetypically facea setof trade-ofs. For instanceagray
rampandasolidwhite patternprojectedontoasurfacecanbe
usedto encodeposition;aftertakingtheratio of thetwo im-
agesthebrightnessateachpixel determineshe correspond-
ing pointon theramp. The drawbackof suchanapproactis
sensitvity to noise,aserrorsin brightnesaneasuremertan
translateinto substantiatriangulationerrors. Ratherthana
smoothpattern,we could insteadprojecta high frequeng
patternsuchasa squarewave. While the imagededgescan
be quite preciselylocalizedand triangulated,an ambiguity
problemarises:the correspondenceetweerobserededges
andprojectedmageis notdirectly measurable.

In this paper we seekto develop an accuratetriangula-
tion systemandthusfollow the approactof projectinghigh
frequeng patterns.To simplify thecorrespondengaroblem,
we projectcolor patternswhich essentiallyencodemorebits
of information at eachedge, at the expenseof somelimi-
tationson surfacere ectance(e.g., the surfacemustre ect



light in all channels).Nonethelessjueto the nite number
of distinctedgetransitionsavailablein threecolor channels,
ambiguity remains. Indeed,the edgesthemseles may be
noisy andhave non-zerdik elihoodof beingassociatedvith
morethanonedifferentcolor transition. Our goalthenis to
nd asurfacethatis the mostlikely amongall possiblehy-
pothesized:orrespondences.

We addresshismultiple hypothesisorrespondengerob-
lemwith dynamicprogramming Dynamicprogrammindhas
long beenusedin stereovision, but hasa numberof limita-
tionsthathave madeit lessdesirablethanothermethodsof
stereareconstructionin the context of color structuredight
range nding, however, we shav thatit canbe quite power-
ful. We describea dynamicprogrammingmethodthatcon-
structspiecavise-continuousurfaces.Onelimitation of dy-
namicprogrammingn this settingis therequirementhatthe
surfacebe monotonicwith respecto the projectorandcam-
era. To overcomethis limitation, we develop a multi-pass
versionof dynamicprogramminghatrecoverssurfacesthat
violate monotonicity A secondproblemwith dynamicpro-
grammingasappliedto traditional stereocorrespondencis
that incorporatinginter-scanlineconstraintsis problematic,
resultingin abruptdisparitydiscontinuitiedbetweeradjacent
scanlinesWith theaid of color structuredight, however, we
have obseredthatthe correspondencis sufciently robust
thatinter-scanlineconstraintaresimplynot necessaryThis
conclusionhasbeenborneout in mary experimentsover a
wide rangeof scanneabjects.

Based on this dynamic programming technique, we
demonstratea system capableof reconstructingaccurate
shapefrom a singleimage. When more than one image
canbe obtained,notably for the caseof a static scene we
shav thatthe additionalimagescanbeincorporatedo yield
denserandmoreaccurateeconstructionsin particular us-
ing a small numberof imagesacquiredwhile the projector
patternshifts acrossthe object, we can match against the
time evolution of there ected patternobseredateachpixel.
This temporalmatchingis shavn to have greaterimmunity
to shapeandshadingvariations.

The restof the paperis structuredasfollows. Section2
overviews someof the structuredlight scanningliterature
and proposeghe architectureof our scanner In Section3
we formulatethe edgecorrespondencproblemasa multi-
hypothesiscodematchingproblemandpresenta multi-pass
dynamicprogrammingsolution. Next, in Section4, we de-
scribethe designof a color-codedprojectionpatternandits
usein reconstructingshapefrom a singleimage. For static
sceneswethendevelopaspacetimenethodthatcanbeused
to attain high resolutionresults(Section5). In Section6,
we describeour implementationand shov resultsfor both
the singleimageandmultiple imageapproachesFinally, in
Section7, we summarizehe work and suggesievenuesfor
futureresearch.

2 Relatedwork

Opticaltriangulationhasbeenan active areaof researctor
decades. The techniquesgthat have beendevelopedrange
from thosethatrequiremary imageso reconstruct surface
to thosethat requireonly a singleimage. Here we discuss
several,but by no meansll, papersalongthatcontinuum.

Amongthe scannershatacquiremary imagesthe swept
stripe scanneris amongthe mostcommon(e.g.,[13, 21]):
a planeof light sweepsacrossa surfacewhile a CCD ar
ray imagesthe stripere ection andtriangulatego the light
plane,scanlineby scanline.Rioux et al. [27] employ a y-
ing spotandlinearsensorarray Kanadeetal. [23] sweepa
light planebut recordthe time at which a peakis obsened
ateachsensoipixel. Thistimeis thenusedto triangulatethe
sensoliline of sightbackto the positionof the stripeat that
time. CurlessandLevoy [12] generalizehistemporalanaly-
sis(calling it “spacetimeanalysis”)to otherscanneicon g-
urationsandobsene thatit substantiallincreasesmmunity
to shapeandre ectancevariationswhich affect purely spa-
tial analysesWhile the Kanadescanne(developedasalow
resolutionprototype)anda versionof the Rioux scannef3]
canachieve highframerates pbothrequirehighly customized
hardware.

In the direction of using fewer images, Sato and
Inokuchi[29] describea setof hierarchicalkstripepatterngo
give rangeimageswith logN imageswhereN is the num-
ber of resohable stripes. In particular the imagescontain
Graycodesgachcamerapixel obsernesabit codeovertime,
and,atthe nest resolutioneachpixel is associatedvith the
interior of a thin stripe. Caspiet al. [8] reducethe num-
berof imagesfurtherby usinga color generalizatiorof Gray
codes.Finally, HattoriandSato[19] re ne theoriginal hier
archicalstripetechniqueby introducingsub-pixel offsetsto
the nal stripepatternto get ner resolution.Theirapproach
is similar to spacetimeanalysisanduseslogN stripesplus
m shiftedversionsof the nest stripes.

Still fewerimagesareusedby Carrihill andHummel[7]
who triangulateusing two images: a ramp and a constant
brightnesgrojectedmage.As notedin Sectionl, thistech-
niqueis highly susceptibléo sensonoise.ChazarandKiry-
ati [9] combinethis methodwith hierarchicalstripesto re-
ducenoisesusceptibilityandlaterHorn andKiryati [20] de-
velopednovel piecavise linear patternsthat requiredonly a
few moreimagesthanthe Carrihill andHummelapproach.

The last set of triangulationtechniqueswve describeare
thosesuitablefor capturingmoving sceneseachundersome
kind of constraint. Hall-Holt and Rusinkievicz [18] de-
scribe a methodthat consistsof projectedstripe patterns
thatvary over time. By nding nearesstripe patternsover
time, a uniquecodecanbe determinedor ary stripeat ary
time. The constraintin this caseis that the object move
slowly to avoid erroneoustemporal correlations. Proes-
manset al. [26, 25 demonstrate scannemwhich projects



a grid patternonto the sceneand matcheghe obsered grid
to the projectedpatternby a global 2D grid optimizational-
gorithm. In this casetheconstrainis thatthevisible portion
of theobjectconsistof asingleconnectedomponentBoyer
andKak [6] projecta color stripepatternin which eachwin-
dow of spatiallyadjacenstripeshasa uniquecolorintensity
con guration. Davies and Nixon [14] proposea color dot
patternwith a similar spatialneighborhoogroperty In both
casesjocal neighborhoodsnust exhibit enoughspatialco-
herenceto presere the windows. Finally, Chenet al. [10]
describeastereovision methodthatalsousesprojectedcolor
stripes but solvescorrespondencdsetweeredgesn thetwo
camerasthrough dynamic programming,thus obtaining a
globaloptimum. The constrainin this caseis surfacemono-
tonicity betweerthecamerasEachof thecolor patterrmeth-
odsabove hasthe additionalconstrainthatthe surfacedoes
notchangehere ectedcolortoomuch,e.g.,doesnt causea
color channeto dropoutcompletely

In this paper we describea techniquethatadmitsto both
a singleimage and a multi-image analysis. The projected
color stripe patterndoesimposethe re ectancerestriction
notedabove, however, we have foundthatmary objectsand
subjectsf interest(e.g.,humanskin) work well. Thesingle
imagemethodresohescorrespondencesith dynamicpro-
grammingasdoesthemethodof Chenetal. [10], but we de-
velopamulti-pasgechniqueo overcomethethemonotonic-
ity constraintandour methodrequiresonly asinglecamera.
Further we demonstrateé methodthat combinesspacetime
analysisanddynamicprogrammingo derive accurateshape
usinga smallnumberof images.

3 Multi-h ypothesiscodematching

The basicprinciple of optical triangulationis illustratedin

Figure2(a): anillumination patternis projectedonto anob-
ject and the re ected light is capturedby a camera. The
relative distancebetweena pointin the illumination pattern
and its positionin the capturedimageis inverselyrelated
to depth,allowing the 3D positionof the point to be recon-
structed,assuminghe cameraand projectorparameterare
known.

Theprimarychallengen opticaltriangulationis obtaining
correspondencbetweenpointsin the projectedpatternand
pixels in the image. This correspondencproblemis miti-
gatedby two obsenrations. First, asshovn in Figure 2(a),
the 2D correspondencproblemreducego determiningcor
respondencesetweeneachrow of the projectedpatternand
arow of therecti ed cameraimage[15]. Second,we can
choosewhatever patternwe wish to project; therefore,we
shouldchoosea patternthat simpli es the correspondence.
Lasertriangulationscannersake this stratgyy to theextreme
by projectinga narrav beamor planeof light thatis eas-
ily identi ed in theimageasa point or contouron the sur
face. Sincevery little informationis availablein eachim-

age,reconstructiorfrom laserscannergypically requiresa
very largenumberof images Multi-stripe techniqueson the
otherhand,oftenusea detailedpatternto obtainasmuchin-
formationaboutthe sceneaspossiblefrom a small number
of images. In this paper we treatthe problemof obtaining
correspondencasing multi-stripe techniquesjn particular
from color stripe patternsof the form shavn in Figure 2(b)
thatyield cameramagedik e theoneshawn in Figure2(c).
While the conceptsfrom this paperare applicableto a
wide range of patterns,we begin by consideringspeci -
cally the caseof patternsconsistingof equal-widthcolor
stripesto be usedfor capturing shapewith a single im-
age. We can enumeratahesestripesby a string of colors

angulationis encodedn thetransitionsbetweercolors. This
sequencecallit Q = (0o; ;5 On 1), IS comprisedof el-
ementsy = (qr ; qg; qb) whereeachcolor channeltakeson
avalueof -1, 0, or 1 correspondingo afalling, constantpr
rising transition,respectiely. For example,(0; 1;1) indi-
catesno changen the red channelafall from 1 to O in the
greenchannelandarisefrom 0to 1 in thebluechannel For
corvenience we adopta notationin which, g; refersto the
j -th projectoredge,q refersto ary (generic)projectoredge,
andq® refersto the transitionin color channelc 2 fr;g; bg
of projectoredgeq.

The re ection of the projectedpatternfrom the sceneis
detectedin the imageas a sequenceof color edges,E =
(eo;e1;:::;em 1) for eachrecti ed sensorscanlinewhere
(usingthesimpli ed notationmentionedabove) acoloredge
e = (€:e%; e is describedby its 1D intensitygradientsin
eachof thethreecolorchannelsOurobjectiveis to solve the
correspondencbetweenthe transitionsequence) andthe
edgesequencé&.

Correctly identifying the correspondencéetweenpro-
jectedandimagedstripes,shavn in Figure2(b) and(c) re-
spectvely, bringsouttwo key dif culties:

Mislabeling: In additionto the projectedpattern,the
color of imagepixels dependsn factorssuchas sur
facere ectanceand shading,viewing direction, color
cross-talkbetweenprojectorspectraand sensor lters,
and sensomoise. Consequentlyobtainingreliable es-
timatesof color directly from pixel valuesis not at all
straightforvard,andmisclassi cationscanresult.

Occlusions Real scenesften have occlusions,shad-
ows, andsurfacediscontinuitieslt is thereforenotreal-
istic to assumehat every projectedtransitionis visible
in theimage.

We addressthe mislabeling problem by introducing a
techniquethat allows for multiple hypotheses Ratherthan
assigninga uniquelabel to every stripein theimage,every
labelassignmenis representedalongwith its probability of
matching. A nal labelingis then obtainedby applying a
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Figure 2. Summary of the one-shot method. (a) In optical triangulation, an illumination pattern is projected onto an object and the
re ected light is captured by a camera. The 3D point is reconstructed from the relative displacement of a point in the pattern and
image. If the image planes are recti ed as shown, the displacement is purely horizontal (one-dimensional). (b) An example of
the projected stripe pattern and (c) an image captured by the camera. (d) The grid used for multi-hypothesis code matching. The
horizontal axis represents the projected color transition sequence and the vertical axis represents the detected edge sequence,
both taken for one projector and recti ed camera scanline pair. A match represents a path from left to right in the grid. Each
vertex (j; i) has a score, measuring the consistency of the correspondence between e, the color gradient vectors shown by the
vertical axis, and g , the color transition vectors shown below the horizontal axis. The score for the entire match is the summation
of scores along its path. We use dynamic programming to nd the optimal path. In the illustration, the camera edge in bold italics
corresponds to a false detection, and the projector edge in bold italics is missed due to, e.g., occlusion.

global optimizationtechniquethat accountsfor occlusions,
shadwovs, anddiscontinuities.

Speci cally, aglobalmatchhypothesis betweerthepro-
jectedtransitionsequenc&) andobsenrededgesequencé&
is de ned asa sequencef integerpairs

- Jo. . J2 Ll J
= i 0, T 1)
where isthenumberof integerpairsof ,j; <j,<:::<
j ,andiq;ig;::;i aredistinctfrom eachother Eachin-
tegerpair (j;ix) " indicateghatedgee;, correspondso the
transitiong, .
The match is equivalentto a pathin a 2D grid, asil-

lustratedin Figure 2(d). The horizontalaxis representshe

projectedtransitionsequence&) andthe vertical axis repre-

sentgheobsenededgesequenc& . Thematch represents
apathfrom left to right in thegrid, intersectingeachrow and

eachcolumnno morethanonce.

Thequality of amatchis computeddy assigningeachver-
tex (j;i) ascore,score (g ; &), measuringhe consisteng
of thecorrespondendeetweeredgee; andtransitiong; . The
speci c de nition of score (g ; &) is describedn Section4.

The scoreof the entirematch is the summationof scores

of all theverticesin , de nedas
X
()= score(qg,;e) ()
k=1

The optimalmatchis thereforede ned as

= argmaxf ( )g 3

In generalthe possiblepathsrepresentethy the 'smaygo
up anddown andhave disconnectedomponentslueto oc-
clusion,texture edgesegtc. Therefore the spaceof all possi-
ble matchess enormouspf sizeO(M N ). A commontech-
niquefor makingthis optimizationproblemtractablds to in-
troduceanassumptiorf depth-orderingor monotonicity[1]

i1<ir<:ii:<i: (4)

With this assumptionEq. (3) may be solved ef ciently us-
ing dynamicprogrammingl1, 24, 17, 11, 2, 10, 22, 4]. The
monotonicityassumptiorshouldbe usedwith care however,
sinceit is violatedin the presenceof occlusions,and can



produceartifacts. In practice,we have obsenred that viola-
tionsof themonotonicityassumptionmresultin dropoutsj.e.,
portionsof the scenethat are not reconstructed.We shav
how this problemcan be addressedyy useof a multi-pass
dynamicprogrammingechnique First, however, we review
thebasicsof dynamicprogrammingn thefollowing subsec-
tion.

3.1 Correspondencédry dynamic programming

We adoptanotationsimilarto thatof Coxetal. [11]. LetG;j ;
bethesub-gridde nedby [0;j] [0;i], and ;; betheopti-
mal pathin Gj ;. Threepossiblecon gurationsof ;. exist:
(1) it consistsof vertex (j;i) andtheoptimalpath ; 4,
inGj 1i 1,(2)it isentirelyinthesub gridG; 1-i,or(3) it
is entirelyin Gj; 1. In thelattertwo cases, i =

or ji= i 1 respecuely Consequently ( ;) maybe
recursvely computedas

8
% 0 ifg j=0or i=0;

< 1i 1)+ score(qg;e); =
i) .

1) '
®)

The costof the optimal solution  to Eq. (3) is given by

( n.m ), andevaluatingevery ( ;) takesO(M N) space
andtime. ., iscomputedy tracingbackthroughthecost
matrix [11], whichtakesO(M + N) time. A commontech-
niqueto reducethe compleity is to restrictthe depthrange
to auserde ned value(e.g.,10% of the maximumpossible
depthrange).

E j
( ';i) = max,

Ty T ()
’ otherwise

3.2 Multi-pass dynamic programming

A fundamentalimitation of matchingalgorithmsbasedon
dynamicprogramming(DP, for short)is the assumptiorof
monotonicity which is violated in the presenceof occlu-
sions. An example of such a violation is shavn in Fig-
ure3(a).In the gure, athin foregroundelementiesin front
of a backgroundplane. Due to the occlusion,the order of
projectedtiransitionsanddetectededgess not the same re-
sulting in a non-monotonigathin the grid, shavn in Fig-
ure3(b).

The DP algorithm thereforefails to nd the optimal
path; instead,it will identify the optimal monotonicsolu-
tion. While this solutioncould potentiallybe quite different
thanthe optimal path,in practicewe have seenthatit cor
respondgo a monotoniccomponenbf the optimalsolution.
In the caseof Figure 3(b), DP identi es the sub-pathcon-
sistingof (A; B; C;D; E). Therestof the optimal solution,
sub-path(F; G), is itself monotonicandcanbeidenti ed by
applyingDP on the sub-gridobtainedby remaving columns
(1;2;4;5;6;9), androws (1;2;5; 6; 7; 8) from the original

grid. The sameproceduremay be repeateduntil all rows
and columnsare exhausted.This procedurewhich we call
MultiPassDP, is summarizedsfollows

procedure  MultiPassDP(grid)
set path to be empty;
while (pathl := PRgrid) is not empty)
path := path pathil;
remove columns and rows in pathl from grid;
return path;
end MultiPassDP

MultiPassDP computesthe monotoniccomponentsof
theoptimalpathin multiple passesenablingsolutionof cor
respondenceroblemswith occlusionsthat are not possible
with traditionalDP. Insteadof exhaustinghe positive mono-
tonic componentspathl, in thegrid, the numberDP passes
canalsobe speci ed by a user basedon prior knovledgeof
how mary “layers” of structurethe scenecontains.

4 One-shotpatterns and scoring functions

Theprevioussectiondescribeshemachineryneededo com-
pute an optimal surface given a projectedpatternand ob-
sened image. Capturingthe shapeof a scenefrom a sin-
gle imageis sometimegalled“one-shot”scanning.In this
sectionwe discusglesigndecisiondn choosinga patternto
projectanda scoringfunction to be usedin computingthe
optimalone-shosurface.

4.1 DeBruijn illumination patterns

Choosinga good patternto projectis of critical importance
for achieving accuratecorrespondenceith optical triangu-
lation techniquesparticularlyone-shotmethods.Assuming
the patternsandimagesarerecti ed, the patternmay be de-

signedfor a single scanlineandreplicatedto producea 2D

vertical pattern. One designchoiceis whetherto project
a smoothor a piecavise-constanpattern. For a one shot
methodencodingnformationin smoothintensityvariations
is dif cult to do, becausesurface shadingcan affect these
variationssubstantially Thus,we chooseo encodanforma-

tion on edgesandresortto a piecavise-constaniflumination

pattern.

In addition, a good patternhasthe propertythat corre-
spondencédetweenprojectededgesand obsened edgesis
easyto determine. As notedearlier eachedgeelementof
Q is comprisedof threecolor edgetransitionlabelsthatcan
eachtake values-1, 0, or 1. This valueassignmenimplies
an “edgealphabet”of 27 uniqgueedges;however, sincethe
edge(0; 0; 0) is really no edgeat all, 26 edgesare actually
availableto us.

Projecting exactly 26 edges would lead to well-
determinedcorrespondencesinceeachedgeis unique,but
this would yield very sparsereconstructions Alternatively,
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Figure 3. Violation of the monotonicity assumption. (a) 9 transitions, ou; t;:::; 0, are projected onto a scene comprised of a
thin foreground surface against a background surface, and 8 edges, e:1;e;:::; es, are detected. Projected edge ¢ is occluded

by the foreground element and not detected. (b) The resulting match grid shows that camera edge indices do not increase
monotonically with corresponding projector edge indices. A multi-pass DP algorithm can recover the (A,B,C,D,E) path in the rst

pass, and the (F,G) path in the second pass.

we couldlay outthesamesequencef edgesandrepeathem
asmary timesasneededo Il outthe desiredtotal number
of projectededges.Considey though,the caseof anobject
thatis 26 projectedstripesin width. The dynamicprogram-
mingalgorithmwill preferto nd asequencef matcheghat
correspondso a single connectedsurface(ratherthana set
of scattereanatches)but dueto therepetitionin thepattern,
asetof equivalentansweraill arise.In fact,sucharepetie
patterncanresultin ambiguity for even larger objects. To
minimize suchambiguity we insteadwe seekto nd a se-
guencethathasa goodwindoweduniquenesgroperty i.e.,
a sequencé¢hathasthe desirednumberof transitionswith a
smallwindow sizen suchthateachsub-sequencef n con-
secutve stripesis uniquewithin the entiresequence.

Our goalnow is to devise a color sequencé thatyields
anedgesequenceé) with agoodwindoveduniquenesgrop-
erty. First, we considerthe fact that given a color p; , the
next color pj+; mustbe differentin at leastonechanneffor
an edgetransitionto occur If we think of thesecolors as
being mappedto base-2numbersf 000, 001;:::;111g (i.e.,
black,blue, ..., white), thenalegal edgeis producedoy per
forming a bitwise XORexclusive or) of a given color with a
numberin therangef 001; : : : ; 111g. For example,thecolor
index correspondingo green 010, couldchangdo 110(yel-
low) by ipping theredchannel.e., by XOfng with 100,
We could thenattainlocal and global non-periodicityif we
could choosea sequencef XORpatterngof which we have
7 to choosdrom) thatareuniquewhentakenin groupsof n
atatime.

De Bruijn sequence§l6] areideally suitedto this prob-

WOz

-

Figure 4. Using a de Bruijn sequence, we can generate binary
R, G, and B patterns that combine to make a sequence for
which each three consecutive color transitions are unique.
This example is a complete sequence for k = 5;n = 3, which
is used to generate the results in this paper.

lem. In particular a k-ary de Bruijn sequencef ordern is

1, whereeachelement
d; is taken from a setof k valuesand for which ary sub-
sequenceof length n appearsexactly once. In our case,
we canconstructup to a 7-ary sequencavith eachelement
d 2 f00%:::;111g. Then,we cangeneratea color in-

dex sequencépg; p1;:::pm) by choosingan initial color
Po 2 f00Q :::;111g andfollowing theiteration:

P+ = P XORd, (6)

In practice,we only neededl25 stripesandthusworked
with k = 5;n = 3. We eliminated110and 111 from the
de Bruijn sequenceaswe found that simultaneoused and
greentransitionssuffered the most from residualcrosstalk
errorsafter approximatedecoupling(seeSection4.2). Fig-
ure 4 shavs a completecolor stripepatterngeneratedn this
manner Notethatwhile deBruijn sequencearenotstraight-
forward to derive, they have beenpreviously takulated by
researcherin combinatorics. We use generatorsvailable
online[28] to obtainde Bruijn cycles.



4.2 Color edgedetection

After the illumination patternfrom the previous sectionis
projectedonto an object,a camerarecordsan imageof the
re ectedlight. In anidealworld, thelight from eachprojec-
tor color channelreachesonly its correspondinglycolored
sensomixel (e.g.,red light is seenonly by red pixels). In
practice however, eachprojectorcolor channehassomein-
uence on all threesensorchannelsa phenomenorknown
ascolor crosstalk.This couplingis complicatedby theinter
ventionof a surfacethatmay modify the projectorspectrum
in unknovn ways beforeit is obsened at the sensar One
solution would be to assumethat the surfaceis spectrally
uniform, so that we needonly measurea projectorcamera
color crosstalkmatrix thatindicateshow mucheachprojec-
tor channein uenceseachcamerachannel.Caspietal. [8],
however, demonstratéhata lesssevererestrictioncanwork
fairly well. In particular they relateobseredcameracolors
to projectorcolorp as:

; h ih i ;

BN R -
0

|{z-} | ——{Z—=1}| {z p{z) 1-{z-}

s X F p (o]

(7)

whereX istheprojectorcameracolor channekrosstalkma-
trix, F is the scenealbedomatrix at a point on the surface,
and o is the ambientlight obsened by the camerafor the
samesurfacepoint. By pre-multiplyingeachcameracolor
by X 1, weobtainnew cameracolors:

Tpl + of

9p9 + 69 (8)

s=X !s= ee o
wheree = X lo. Using this model, crosstalkhaslargely
beenfactoredout sothateachcolor channekcanbeanalyzed
independenthand correlatedmorecloselyto projectedcol-
ors.

Givena colorcorrectedcamerascanline we cannow lo-
calize color edgesby looking for local extremain gradients
(1D derwatives)in eachof the color channels.In practice,
however, thiswill leadto distinctlocalizationsin eachcolor
channel.Instead we computea combinedgradientfunction
alonga scanlinethatis comprisedof the sumof the squares
of the gradientsin eachof the color channels. The edges
arethendeterminedo belocal maximaof this function,and
their strengthsarethe color gradientvaluesat the localized
edges.

4.3 Edge-basedscoring functions

We now considetthe problemof evaluatinga matchbetween
a projectedcolor transitionq andan obsered edgee in an
image by de ning a scorefunction score (g;€). Lete =
(¢;e9;€"), wheree® 2 [ 1;1]is the 1D intensitygradient
of ein channet, andlettransitiong = (q'; ¢?; oP), with ¢ 2
f 1,0;1g. e andg areconsistenbnly if they matchin all

Congitency(L, €) Congistency(0, &%)

VNN
.

@ (b) ©

Consistency(-1, €9)

Figure 5. Consistency measure consistency (g°; €°) between
projector transition g° and €°. (a) g° = 1, (b) g° = 0, and (c)
Q= 1

threechannelsAccordingly, we usethefollowing de nition
of score:

score (q; €) = szn’rlig_bgf consistency (g°;€%)g (9)

whereconsistency (g¢;€°) 2 [ 1;1] measureshe agree
mentbetweencorrespondingolor channelsf g ande. For
example,wheng® = 1, consistency (1;€°) shouldbel if
€° is sufciently large, 0 if je° is sufcient small,and neg-
ative if €° is negative. More formally, consistency (q°; €°)
is de ned by the following equation,Eq. 10(a), and illus-
tratedin Figure 5(a). For the casesof ° = 0 and 1,
consistency (0;€e®) and consistency ( 1;€°) are simi-
larly de ned in Eg. 10(b,c)andillustratedin Figure 5(b,c)
respectiely.

consistency (1;€°) = CLAI\/PC—; 1;1) (a)
consistency (0;€°) = CLAMR LN 1) (b
consistency ( 1;€°) = consistency (1; €) (c)

(10)
where
8 .
< Xg if X< Xop;
CLAMRK; Xg;X1) = . X if Xg< X Xi;
Xg if x1<x
and0 < 1 aresoftthresholdghatarechoserbasedn

theuncertaintyof edgemeasurementn particular gradients
in therangeof [ ; ] canbeclassi edwith fractionalvalues
that re ect their uncertainty whereasgradientswith abso-
lute valuesthat are sufciently large or small are assigned
either-1, 0, or 1. The decisionon how to label eachedge
is deferredto the global optimizationstage.In the degener
atedcasewhen = |, thegradientsareclassi edwith hard
thresholdsasin [6]. Thelargerthevalueof , themore
uncertainconsistency . Lesscertainconsisteng measures
areusefulwhentherearesigni cant differencesn theinten-
sity of projectedandre ected patterns,due for instanceto
noise,shadingor surfacetexture.

Note that edgepair (q; €) will get matchedby DP only
if score (q; €) is positive andit will not getmatchedf ary



of its channelconsisteng measuress negative. As aresult,
clampingof negative consisteng valuesis not necessaryn
theory butin practiceavoidspossiblenumericalproblemsof
large negative numberasvhen and andnearlyequal.

5 Color-codedspacetimeanalysis

One-shofpatternsare particularly usefulin caseswvhereall
measurementmust be capturedat the sametime, for in-
stancein the caseof reconstructinghe instantaneoushape
of amoving object. Staticscenespn the otherhand provide
the opportunityto capturemultiple measurementsinstead
of projectinga singlepattern,it is possibleto projectseveral
patterndo improve accurag or completenessf theresulting
reconstruction.

Oneapproacho increasingthe resolutionis to take a set
of imagesin which the one-shoftprojectorpatternis shifted
a pixel to theright betweenphotographsfollowed by com-
bining the one-shotesultfor eachimageinto a singlerange
map. This approachwhile feasible doesnot make the most
of the opportunityto take multiple shots.One-shoscanning
techniquesare sensitve to errorsasa resultof surfacedis-
continuitiesand texture, both of which can biasthe calcu-
latedlocationof edgesor introducefalseedges.Curlessand
Levoy [12] describethis phenomenoiin detail (for the case
of determiningthe centerof a Gaussianyratherthan loca-
tion of anedge)anddemonstrat@ow theseproblemsaread-
dressedhroughthe useof spacetimeanalysis In their case,
alaserstripeis projectedonto anobjectandis sweptslowly
over its surface. The re ected light is capturedby a camera
to producea sequencef imagesduring the sweep. Track-
ing theintensitiesrecordedor asingleline of sightfrom the
sensogivesatemporalpro le of light re ectedfrom asingle
pointon the surface. The peakof this pro le correspond$o
thetime atwhich the stripepasse®ver thatpixel andcanbe
estimatedo sub-piel accurag. Theadwantageof thespace-
time approachs thatit is farlesssensitve to discontinuities
andtexture, andhasbeenshown to producesuperiorrecon-
structiong12].

A disadwantageof previous applicationsof spacetime
analysisis that a very large numberof imagesare required
to ensurghatthe stripepassesver every pixel in theimage.
We shawv thatspacetimenalysismay be adaptedandincor
poratedinto our multi-hypothesiscodematchingframework
to generatehigh-quality rangedata using a much smaller
numberof imageswith the useof a projectorinsteadof a
laserscannerAs in theone-shotasewe rst needo choose
boththeillumination patternsandthe scoringfunction.

5.1 Smoothed,shifted de Bruijn patterns

Figure 6(a) illustrateshow the spacetimemethodworks in
the context of shifting color stripe patterns.The shift in the

patternover time de nes a temporalpro le for eachpro-

jectedray and eachpixel in the image. Thus, by matching
sensorpro les to projectorpro les, we canreconstructhe

surface. In generaleachsensorpro le will triangulateto a

projectorline of sightthatis betweenprojectorpixels. To

do sub-piel interpolatedmatching,we requirethatthe pro-

jection patternsbe smoothrelative to the rate of shifting the

pixels. In addition,we seekto projectasfew imagesaspossi-
ble while allowing reliablecorrespondence® be determined
betweerprojectorandsensopro les. For thesereasonswe

employ asmoothedde Bruijn color pattern;i.e., we take the

one-shotcolor pattern,smoothit with a Gaussianlter , and
projectshiftedcopiesovertime.

Eachcamerapixel pro le hasa numberof color transi-
tions, dependingon the numberof patternsprojectedand
the ratev at which the patternshifts. If the pro le is long
enoughto containat leastn transitions,wheren is the or-
der of the de Bruijn sequencethe correspondencbetween
imageandpatternmay be uniquelydeterminedn principle,
basednthewindoweduniquenesgropertyof deBruijn se-
quences.However, we canusefewer framesandallow DP
to resolwe the ambiguity In fact,by de ning ascore func-
tion for spacetimgatternswe canagain employ the multi-
hypothesiscode matchingtechniqueto derive an optimal
matd, that betteraccountsfor noise and other sourcesof
measuremerdrror, asshavn in Figure6(b).

5.2 Spacetimescoring function

In spacetimenalysis jnsteadof comparingprojectededges
to obsenred edgeswe comparehe temporalpatternat each
projectorpixel to thetemporalpatternrecordecat eachcam-
erapixel. We can still describethe matchingproblemin
termsof a scoringfunction score (q; €), but now the ele-
mentsg® ande® (c 2 fr;g;bg) are eachvectorsin a T-
dimensionakpacewhereT is the numberof framesin the
sequenceln principle, after color calibration,we shouldbe
ableto measuréhow closethe projectorandcamergoatterns
areby computingthedifferencebetweere® andtheestimated
re ection ¢ o + 6f (seeEq.8). Since © ande® areun-
known, we canestimatehe bestvaluesthatminimize differ-
enceshetweermeasuremerdndprediction. A shortcoming
of this approachariseswhene® is on anobliquesurface,for
example closeto thetamget's contourtangento thecameras
viewing direction,wheree® is usuallyvery small compared
to the pixel colorson a frontal parallelsuface. In this case,
the differencebetweeng® ande® is no larger thankek? by
setting ¢ = 0andef = 0. Theresultis thatbadmatchesare
not penalizedsign cantly for low intensitye®'s. To counter
thisproblem we have designedisimplesymmetrigperchan-
nel cost(“inconsisteng”) function:

cost ¢(qf;e°) = mibn ka o°+b 1 €k?
a,;

+ mibnka e€+b1 K (1)
a;
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Figure 6. Color-coded spacetime analysis. (a) The curves represent projected and re ected intensity pro les in the red channel.
(The green and blue channel pro les are not shown to simplify the gure.) As the illumination pattern shifts to the right in time,
we can track a single line of sight from the projector to a point on the surface. The light re ects from that surface point to the
camera along a sensor line of sight. We can see that, in the continuous case, the projection pattern will be reproduced overtime
at the sensor. In the discrete case, the sensor records discrete samples at times t1;:::;ty, which can later be matched to the
projection pattern. (b) The temporal pro les, instead of spatial edges, are matched using dynamic programming. The horizontal
axis shows the projected r; g; bchannels separately and as a combined color pattern. The vertical axis shows the recorded color
patterns. The gray-scale image illustrates a score grid through which DP nds a globally optimal path. (The score is in proportion
to the darkness.) In this example, we apply the depth range constraint, which implies that grid vertices outside of a prescribed
diagonal band are ruled out by assigning their scores to be 0.

wherea; b arescalarcoefcients independentlyptimizedin 5.3 Sub-pixelmatching
eachof theaddendsandt is a T -dimensionalectorof 1's. ) ) . ]
Thetotal cost,cost (q; €) is thenthesumoverall threechan- ~ T1he dynamic programming technique only gives cam-

nels.Notethatthe smallercost (q; €) is, themoreconsistent ~ €ra and projector correspondenceip to pixel resolution.
gande are.Sincethematchingproblem Eq.3,isformulated ~ Sub-pbel correspondencean be obtainedusing a post-

asamaximizationover positive numbersthe score (q; €) is processingstepso that eachcamerapixel can be matched
de ned as betweenprojector pixels. Speci cally, for each corre-

sponding pair of camerapixel & and projector pixel ¢

generatedby DP, if score(q;e) is larger than both

score (g 1;€) andscore(G+1;€), a parabolais t to

score (g;e) = Co cost(q;e) (12) thethreepoints(j  1;score (g 1;&)), (j;score(q;e)),

and(j + 1;score (g1 ;€)) andthe optimal matchingpo-

sition is obtainedby computingthe peak of the parabola.

If score(q;e) is not larger than its neighbors, both

whereCy is globalconstanbetweers = rg_ienfscore(q; e)g score (g 1;&) and score(g+1;€e) are checled to see
ands = maxf score (; €)g. RecallthatDP will notmatch ~ Whetherthey arelocal maxima. If again no peakis found,
g:e the procedurerepeatsonce more, expandingin both direc-
tions. If still no peakis found,theintegersolutiongenerated

by DPis retained.

(g; ) pairswith negative scores.If Cq < s, score(q; €) is

negative for every (q; €) pair andthe optimalmatchbetween
projectedand obsened edgesequencess simply empty If

Co > s, score (q; €) is positive for every (q; €) pairandDP
will try to matchevery possibleedgepair without violating 6 Results

monotonicityconstriant.In short,too smallCq will resultin

falsedropoutsandtoolarge Co mayintroducefalsematches.  We have developedan experimentalsystemfor testingour
In practice,we chooseCy = s+ 0:2(s s), which works one-shotand spacetimeshapecapturemethods. The hard-
well for our experimentsetup. wareconsistsof a KodakDCS520digital still cameraanda
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Figure 7. Comparison between DP and CFG [6].

(a) Photo of original Einstein bust.

() (d)

(b) Stripe image used for one-shot

reconstruction. The bust was photographed on its side, but the image shown here is rotated by 90 degrees for convenient
visualization. (c) Shaded rendering of the CFG reconstruction. (d) Shaded rendering of the DP reconstruction. In areas of high
curvature, false edges are more prevalent, and result in dropouts in the CFG reconstruction, whereas DP is free to ignore such

edges in pursuit of a global optimum.

CompagMP1800digital projector To simulateresolutions
morecomparabldo a video camera(the sensortype we ul-
timately planto usefor realtimecapture) we downsampled
theKodakimagesby afactorof 2X in eachdimensionyield-
ing 864x576images. The projectoroperatesat 1024x768
resolution. For geometriccalibration,we imagea checler-
boardtexturedplanein avariety of poses For eachpose we
also project a distinct checlerboardpatternonto the plane
andtake anadditionalimage. Theimagestakenwithout the
projectedpatternare usedto estimatethe cameraintrinsics
and planeposes(seeBouguet[5]). For the remainingim-
ageswe cancomputethe 3D coordinate®f thetheprojected
patternfeatures(correspondingo projectorrays) and thus
calibratethe projector We employ alinear projectve model
for both the cameraand projector In addition, to improve
color channelalignmentin the digital camerawe imagethe
checlerboardexturedplaneanadditionaltime andcompute
separat@D homographie$or theredandbluechannelsel-
ativeto thegreen.

TheX matrixin Eq.7 is approximatedby projectingsolid
red,greenandblue patterngo a fronto-parallelwhite board
andcapturingthreeimagesaccordingly The meancolorsof
thethreecapturedmagesconstitutethethreecolumnsof X .

We mustnotethat,while we have takensomemeasurefo
reducecolor misalignmentsandaccountfor color crosstalk,
we still obsene someresidualmisalignmentandnon-linear
crosstalkbehaiors that have not beenaccountedor. As a
result, someof the renderedreconstructionshavn in this

sectionexhibit coherentidgesatcolortransitionboundaries.

We arecurrentlydevelopingtechniquedor calibratingaway
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theseresidualartifacts.

6.1 One-shotScanning

We have testedthe one-shotcapturemethodon a variety
of scenes. In eachcase,the projectedpatternconsistsof
de Bruijn generatedsequencewith 7 pixel wide stripes
(roughly 150stripestotal).

First, we compareghedynamicprogrammingapproacho
the CrystalFitting and Growing (CFG) algorithmdeveloped
by Boyer andKak [6], for which resultsare shovn in Fig-
ure?. CFG rst labelseachedgetransitioncodeby comput-
ing thesignsof intensitytransitiondn thethreechannelsfol-
lowed by matchingthe labelededgesequencdy iteratively

nding thelongestmatchingsub-sequencesn practice we
have foundthis techniqueto befragile in the presencef er-
roneousedgelabels,resultingin outlier pointsandholesin
the reconstructiorasshowvn in the gure. One-pasPP, on
the otherhand, is ableto copewith thesemis-labelingsby
searchingfor a globally optimal, monotonicsolution. The
resultis fewer holesin thereconstruction.

The Einstein bust in the previous example is fairly
“white,” similar to the color crosstalkcalibrationtarget. To
testsensitvity to fairly non-whitesurfaceswe took one-shot
imagesof humanhands(Figure 1) and of a paintedporce-
lain cat (Figure 8). In both casesthe reconstructionsare
fairly accurateandcompletejncluding,for instanceregions
aroundthe cat's red noiseandover its orangebody Partic-
ularly darkareagesultin holesin the reconstructionssince
edgedn theseareasarenot detectedy thesensor
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Figure 8. Sensitivity to surface re ectance .

(b)

(a) Photo of original porcelain cat model.

()

(b) Stripe image used for one-shot

reconstruction. (c) Shaded rendering of the DP reconstruction. Although this model is not “colorless” the reconstruction behaves
reasonably well. Completely black regions, of course, lead to range dropouts.

Notethatonenoticeableartifactin Figurel is the occur
renceof falseedgeextensionsat the boundaryof the object.
This artifactarisespecaus®P is freeto addpointsontothe
boundarywhile still increasingthe score. Thresholdingout
low intensity gradientsminimizesthe effect. Further these
pointscanbe downweightedwhenused,e.g.,to reconstruct
surfaceq30]

Finally, to demonstratehe multi-passDP method, we
shav a simple examplethat violatesthe monotonicitycon-
straint: a nger in front a pieceof cloth (Figure9). Using
asingleDP passthe nger is lostin favor of reconstructing
the cloth background. The secondpass,however, recovers
muchof thelost nger. Notethatthis example togethemwith
Figurel, alsodemonstratethat our scanningmethodis ap-
plicableto scenesvith disconnectedomponentsywhich can
notbereconstructethy methodshatrely ontraversingedge
graphsspatiallywithin a singleconnecteccomponen{asin
thecaseof, e.g.,Proesmanstal. [26, 25]).

In the abore experimentsgachrangemaptakeslessthan
1 minute to computeofine usinga 900 MHz Pentiumlll
PC. The exact time generallydependson the number of
edgegletectecandthedepthrangeof thescene Reconstruc-
tionstypically containtensof thousandsf rangepoints,with
denseverticalsamplingalongstripeedgesandcomparatiely
sparsesamplinghorizontally For atriangulationangleof ap-
proximately17 degrees,andan x-y eld of view of about
40cmx 25cm, we have found plane- t accurag to have a
standardeviation of 0.18mm.

6.2 SpacetimeAnalysis

To shawv the improvementpossibleusing spacetimeanaly-
sisfor staticscenesye have donea moredetailedstudy of
the Einsteinbust, as shavn in Figure 10. In this case,we
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projecta shifted sequencef 7 patternsonto the bust. For
comparisorwith a non-spacetimenethod,we rst choose
the samepatternasin the one-shoimethod shift the pattern
by one pixel 7 times, and independentlyestimatea range
map for eachimage. We then combinetheserangemaps
into a single high resolutionrangemap as shavn. For the
spacetimemethod,we blur the samepatternwith a Gaus-
sian Iter ( = 1.5 pixels), shift it by two pixels at a time,
and performthe reconstructiordescribedn Section5. As
the gure shaws, the spacetimanethoddoesa substantially
betterjob of resolving ne detail. In particular the edgede-
tectionmethodusedin the one-shotechniquds susceptible
totherapidshadingchangedn high cunatureareaswhereas
the spacetimaechniques muchlessso. Further while the
plane- t accurag of the multiple one-shoimethoddoesnot
improve with more images,the spacetimemethodexhibits
signi cantly improved accurag, down to a standarddevia-
tion of 0.048mm almostfour timeslessnoisy.

7 Conclusionand Futur e Work

This paperpresentsa generalmulti-passdynamicprogram-
ming algorithmto solve the multiple hypothesiscodematch-
ing problemin structuredlight scanning. The algorithmis
appliedto two speci ¢ scanningmethods:a one-shotscan-
ning method suitable for measuringrange data for mov-
ing objects,anda spacetimemethodwhich generateigh-
resolutionrangedatafor staticscenes.

This work haspotentialfor improvementand future re-
searchin several directions. In the shortterm, we hopeto
mitigatethe effectsof the occasionatidgesinducedby color
edges,asnotedin the previous section. We believe that a
self-calibrationin which the projectedcolor patternsare rst
obsened by the cameraand characterizedlirectly in cam-



eraspacecould be emplo/ed. We also hopeto implement
arealtimecapture(possiblyof ine processingyystemusing
synchronized/ideo andprojection. In addition,we hopeto
experimentwith usingspacetimanalysiso reducehenum-
ber of imagesrequiredto reconstructshapes. Finally, we
hopeto explorethereconstructiorof 3D shapefe ectance,
andmotion modelsusingthe systemdescribedn this paper
asastartingpoint.
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Figure 9. Comparison between one-pass DP and two-pass DP. (a) Photo of original scene of a hand and nger in front of a cloth
background. (b) Stripe image used for one-shot reconstruction. (c) Shaded rendering of a one-pass DP reconstruction. (d)
Shaded rendering of a two-pass DP reconstruction. The second pass recovers most of the nger that violated monotonicity and
was not recoverable in a single pass. The “double- nger” hole in the background corresponds to projector and sensor visibility
shadows.
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Figure 10. Comparison between multiple one-shots and spacetime analysis. (a) Stack of 7 stripe images taken of the Einstein
bust for use with spacetime analysis. (b) Shaded rendering of reconstruction produced by combining 7 one-shot results (using
shifted one-shot patterns). (c) Shaded rendering of reconstruction produced by spacetime analysis (using the patterns in (a)). (d)
and (e) Renderings of the left eye (on right side of the (b) and (c) images) using multiple one-shots and spacetime, respectively.
Notice the improved resolution in the wrinkles under spacetime. (f) and (g) Renderings of the letters “mc” on the base of the bust
using multiple one-shots and spacetime, respectively. Notice the crisper, less noisy reconstruction under spacetime.
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