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Figure 1. In this paper, we show how to reconstruct the shape of a scene, such as the two hands shown on the left, given a single
photograph of the scene under colorstriped illumination shown at center. A novel dynamic programming method leads to the
geometric reconstruction on the right, shown as a shaded rendering from a new viewpoint.

Abstract

Thispaperpresentsa color structuredlight techniquefor
recoveringobjectshapefromoneor more images.Thetech-
niqueworksby projectinga patternof stripesof alternating
colors andmatching theprojectedcolor transitionswith ob-
servededgesin the image. Thecorrespondenceproblemis
solvedusinga novel, multi-passdynamicprogrammingal-
gorithmthat eliminatesglobal smoothnessassumptionsand
strict orderingconstraintspresentin previousformulations.
Theresultingapproach is suitablefor generating bothhigh-
speedscansof movingobjectswhenprojectinga singlestripe
pattern and high-resolutionscansof static scenesusing a
short sequenceof time-shiftedstripe patterns. In the latter
case, spacetimeanalysisis usedat each sensorpixel to ob-
tain inter-framedepthlocalization.Resultsaredemonstrated
for a varietyof complex scenes.

1 Intr oduction

Reconstructingaccurateshape from images is a long-
standingandchallengingproblemin computervision. Struc-
turedlight techniquesmethodssimplify theproblemwith the
helpof controlledilluminationandcanyield excellentresults
in practice.Recently, researchershave focusedon speeding
up the acquisitionprocessby designingtechniquesthat re-
quire only a small numberof input images,in somecases
evena singleimage. Indeed,beingableto captureaccurate

shapefrom a singleimageopensup thepossibilityof scan-
ningmovingscenesby repeatingtheprocessat videorates.

Customhardwaresolutionshave beendevelopedto solve
the problem of rapid shape capture, but enabling the
constructionof range�nders from more commonly avail-
able componentsmakes them more accessibleto other re-
searchers.To this end, we focus on optical triangulation
methodswhich canbedevelopedwith a videoprojector(in
somecases,aslideprojector)andacamera.

In designingoptical triangulation systems,researchers
seekingto minimizethenumberof imagesrequiredfor shape
capturetypically faceasetof trade-offs. For instance,agray
rampandasolidwhitepatternprojectedontoasurfacecanbe
usedto encodeposition;aftertakingtheratio of thetwo im-
ages,thebrightnessateachpixel determinesthecorrespond-
ing point on theramp.Thedrawbackof suchanapproachis
sensitivity to noise,aserrorsin brightnessmeasurementcan
translateinto substantialtriangulationerrors. Ratherthana
smoothpattern,we could insteadproject a high frequency
patternsuchasa squarewave. While the imagededgescan
be quite preciselylocalizedand triangulated,an ambiguity
problemarises:thecorrespondencebetweenobservededges
andprojectedimageis notdirectlymeasurable.

In this paper, we seekto develop an accuratetriangula-
tion system,andthusfollow theapproachof projectinghigh
frequency patterns.To simplify thecorrespondenceproblem,
weprojectcolor patterns,whichessentiallyencodemorebits
of information at eachedge,at the expenseof somelimi-
tationson surfacere�ectance(e.g., the surfacemust re�ect



light in all channels).Nonetheless,dueto the �nite number
of distinctedgetransitionsavailablein threecolor channels,
ambiguity remains. Indeed,the edgesthemselves may be
noisyandhave non-zerolikelihoodof beingassociatedwith
morethanonedifferentcolor transition.Our goal thenis to
�nd a surfacethat is themostlikely amongall possiblehy-
pothesizedcorrespondences.

Weaddressthismultiplehypothesiscorrespondenceprob-
lemwith dynamicprogramming.Dynamicprogramminghas
long beenusedin stereovision, but hasa numberof limita-
tions thathave madeit lessdesirablethanothermethodsof
stereoreconstruction.In thecontext of color structuredlight
range�nding,however, we show that it canbe quite power-
ful. We describea dynamicprogrammingmethodthatcon-
structspiecewise-continuoussurfaces.Onelimitation of dy-
namicprogrammingin thissettingis therequirementthatthe
surfacebemonotonicwith respectto theprojectorandcam-
era. To overcomethis limitation, we develop a multi-pass
versionof dynamicprogrammingthatrecoverssurfacesthat
violatemonotonicity. A secondproblemwith dynamicpro-
grammingasappliedto traditionalstereocorrespondenceis
that incorporatinginter-scanlineconstraintsis problematic,
resultingin abruptdisparitydiscontinuitiesbetweenadjacent
scanlines.With theaidof colorstructuredlight, however, we
have observed that thecorrespondenceis suf�ciently robust
thatinter-scanlineconstraintsaresimplynotnecessary. This
conclusionhasbeenborneout in many experimentsover a
wide rangeof scannedobjects.

Based on this dynamic programming technique, we
demonstratea systemcapableof reconstructingaccurate
shapefrom a single image. When more than one image
canbe obtained,notably for the caseof a staticscene,we
show thattheadditionalimagescanbeincorporatedto yield
denserandmoreaccuratereconstructions.In particular, us-
ing a small numberof imagesacquiredwhile the projector
patternshifts acrossthe object, we can matchagainst the
timeevolutionof there�ectedpatternobservedateachpixel.
This temporalmatchingis shown to have greaterimmunity
to shapeandshadingvariations.

The restof the paperis structuredasfollows. Section2
overviews someof the structuredlight scanningliterature
andproposesthe architectureof our scanner. In Section3
we formulatethe edgecorrespondenceproblemasa multi-
hypothesiscodematchingproblemandpresenta multi-pass
dynamicprogrammingsolution. Next, in Section4, we de-
scribethedesignof a color-codedprojectionpatternandits
usein reconstructingshapefrom a singleimage. For static
scenes,wethendevelopaspacetimemethodthatcanbeused
to attain high resolutionresults(Section5). In Section6,
we describeour implementationand show resultsfor both
thesingleimageandmultiple imageapproaches.Finally, in
Section7, we summarizethe work andsuggestavenuesfor
futureresearch.

2 Relatedwork

Optical triangulationhasbeenanactive areaof researchfor
decades. The techniquesthat have beendevelopedrange
from thosethatrequiremany imagesto reconstructasurface
to thosethat requireonly a single image. Herewe discuss
several,but by nomeansall, papersalongthatcontinuum.

Amongthescannersthatacquiremany images,theswept
stripe scanneris amongthe most common(e.g., [13, 21]):
a planeof light sweepsacrossa surfacewhile a CCD ar-
ray imagesthe stripere�ection andtriangulatesto the light
plane,scanlineby scanline.Rioux et al. [27] employ a �y-
ing spotandlinearsensorarray. Kanadeet al. [23] sweepa
light planebut recordthe time at which a peakis observed
ateachsensorpixel. This time is thenusedto triangulatethe
sensorline of sight backto the positionof the stripeat that
time. CurlessandLevoy [12] generalizethis temporalanaly-
sis (calling it “spacetimeanalysis”)to otherscannercon�g-
urationsandobserve thatit substantiallyincreasesimmunity
to shapeandre�ectancevariationswhich affect purely spa-
tial analyses.While theKanadescanner(developedasa low
resolutionprototype)anda versionof theRioux scanner[3]
canachievehighframerates,bothrequirehighly customized
hardware.

In the direction of using fewer images, Sato and
Inokuchi[29] describea setof hierarchicalstripepatternsto
give rangeimageswith logN images,whereN is thenum-
ber of resolvable stripes. In particular, the imagescontain
Graycodes,eachcamerapixel observesabit codeover time,
and,at the�nest resolution,eachpixel is associatedwith the
interior of a thin stripe. Caspiet al. [8] reducethe num-
berof imagesfurtherby usingacolorgeneralizationof Gray
codes.Finally, Hattori andSato[19] re�ne theoriginal hier-
archicalstripetechniqueby introducingsub-pixel offsetsto
the�nal stripepatternto get�ner resolution.Theirapproach
is similar to spacetimeanalysisanduseslogN stripesplus
m shiftedversionsof the�nest stripes.

Still fewer imagesareusedby Carrihill andHummel[7]
who triangulateusing two images: a ramp and a constant
brightnessprojectedimage.As notedin Section1, this tech-
niqueis highly susceptibleto sensornoise.ChazanandKiry-
ati [9] combinethis methodwith hierarchicalstripesto re-
ducenoisesusceptibility, andlaterHornandKiryati [20] de-
velopednovel piecewise linearpatternsthat requiredonly a
few moreimagesthantheCarrihill andHummelapproach.

The last set of triangulationtechniqueswe describeare
thosesuitablefor capturingmoving scenes,eachundersome
kind of constraint. Hall-Holt and Rusinkiewicz [18] de-
scribe a method that consistsof projectedstripe patterns
that vary over time. By �nding neareststripepatternsover
time, a uniquecodecanbedeterminedfor any stripeat any
time. The constraintin this caseis that the object move
slowly to avoid erroneoustemporal correlations. Proes-
manset al. [26, 25] demonstratea scannerwhich projects
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a grid patternonto thesceneandmatchestheobservedgrid
to theprojectedpatternby a global2D grid optimizational-
gorithm.In thiscase,theconstraintis thatthevisibleportion
of theobjectconsistof asingleconnectedcomponent.Boyer
andKak [6] projectacolorstripepatternin whicheachwin-
dow of spatiallyadjacentstripeshasa uniquecolor intensity
con�guration. Davies and Nixon [14] proposea color dot
patternwith asimilar spatialneighborhoodproperty. In both
cases,local neighborhoodsmustexhibit enoughspatialco-
herenceto preserve the windows. Finally, Chenet al. [10]
describeastereovisionmethodthatalsousesprojectedcolor
stripes,but solvescorrespondencesbetweenedgesin thetwo
camerasthrough dynamic programming,thus obtaining a
globaloptimum.Theconstraintin thiscaseis surfacemono-
tonicitybetweenthecameras.Eachof thecolorpatternmeth-
odsabove hastheadditionalconstraintthat thesurfacedoes
notchangethere�ectedcolor toomuch,e.g.,doesn't causea
color channelto dropoutcompletely.

In this paper, we describea techniquethatadmitsto both
a single imageand a multi-imageanalysis. The projected
color stripe patterndoesimposethe re�ectancerestriction
notedabove,however, we have foundthatmany objectsand
subjectsof interest(e.g.,humanskin) work well. Thesingle
imagemethodresolvescorrespondenceswith dynamicpro-
gramming,asdoesthemethodof Chenetal. [10], but wede-
velopamulti-passtechniqueto overcomethethemonotonic-
ity constraint,andourmethodrequiresonly asinglecamera.
Further, we demonstratea methodthat combinesspacetime
analysisanddynamicprogrammingto derive accurateshape
usingasmallnumberof images.

3 Multi-h ypothesiscodematching

The basicprinciple of optical triangulationis illustratedin
Figure2(a): an illumination patternis projectedontoanob-
ject and the re�ected light is capturedby a camera. The
relative distancebetweena point in the illumination pattern
and its position in the capturedimage is inversely related
to depth,allowing the3D positionof thepoint to be recon-
structed,assumingthe cameraandprojectorparametersare
known.

Theprimarychallengein opticaltriangulationisobtaining
correspondencebetweenpointsin the projectedpatternand
pixels in the image. This correspondenceproblemis miti-
gatedby two observations. First, asshown in Figure2(a),
the2D correspondenceproblemreducesto determiningcor-
respondencesbetweeneachrow of theprojectedpatternand
a row of the recti�ed cameraimage[15]. Second,we can
choosewhatever patternwe wish to project; therefore,we
shouldchoosea patternthat simpli�es the correspondence.
Lasertriangulationscannerstake thisstrategy to theextreme
by projectinga narrow beamor planeof light that is eas-
ily identi�ed in the imageasa point or contouron the sur-
face. Sincevery little information is available in eachim-

age,reconstructionfrom laserscannerstypically requiresa
very largenumberof images.Multi-stripe techniques,onthe
otherhand,oftenuseadetailedpatternto obtainasmuchin-
formationaboutthe sceneaspossiblefrom a small number
of images.In this paper, we treatthe problemof obtaining
correspondenceusing multi-stripe techniques,in particular
from color stripepatternsof the form shown in Figure2(b)
thatyield cameraimageslike theoneshown in Figure2(c).

While the conceptsfrom this paperare applicableto a
wide rangeof patterns,we begin by consideringspeci�-
cally the caseof patternsconsistingof equal-widthcolor
stripes to be used for capturingshapewith a single im-
age. We can enumeratethesestripesby a string of colors
P = (p0; p1; : : : ; pN ). The informationwe will usefor tri-
angulationis encodedin thetransitionsbetweencolors.This
sequence,call it Q = (q0; q1; : : :; qN � 1), is comprisedof el-
ementsqj = (qr

j ; qg
j ; qb

j ) whereeachcolor channeltakeson
a valueof -1, 0, or 1 correspondingto a falling, constant,or
rising transition,respectively. For example,(0; � 1; 1) indi-
catesno changein the redchannel,a fall from 1 to 0 in the
greenchannel,andarisefrom 0 to 1 in thebluechannel.For
convenience,we adopta notationin which, qj refersto the
j -th projectoredge,q refersto any (generic)projectoredge,
andqc refersto the transitionin color channelc 2 f r; g; bg
of projectoredgeq.

The re�ection of the projectedpatternfrom the sceneis
detectedin the imageas a sequenceof color edges,E =
(e0; e1; : : :; eM � 1) for eachrecti�ed sensorscanline,where
(usingthesimpli�ed notationmentionedabove)acoloredge
e = (er ; eg; eb) is describedby its 1D intensitygradientsin
eachof thethreecolorchannels.Ourobjective is to solvethe
correspondencebetweenthe transitionsequenceQ andthe
edgesequenceE.

Correctly identifying the correspondencebetweenpro-
jectedandimagedstripes,shown in Figure2(b) and(c) re-
spectively, bringsout two key dif�culties:

� Mislabeling: In addition to the projectedpattern,the
color of imagepixels dependson factorssuchas sur-
facere�ectanceand shading,viewing direction, color
cross-talkbetweenprojectorspectraandsensor�lters,
andsensornoise. Consequently, obtainingreliablees-
timatesof color directly from pixel valuesis not at all
straightforward,andmisclassi�cationscanresult.

� Occlusions: Realscenesoften have occlusions,shad-
ows,andsurfacediscontinuities.It is thereforenot real-
istic to assumethatevery projectedtransitionis visible
in theimage.

We addressthe mislabeling problem by introducing a
techniquethat allows for multiple hypotheses. Ratherthan
assigninga uniquelabel to every stripein the image,every
labelassignmentis represented,alongwith its probabilityof
matching. A �nal labeling is then obtainedby applying a
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Figure 2. Summary of the oneshot method. (a) In optical triangulation, an illumination pattern is projected onto an object and the
re�ected light is captured by a camera. The 3D point is reconstructed from the relative displacement of a point in the pattern and
image. If the image planes are recti�ed as shown, the displacement is purely horizontal (onedimensional). (b) An example of
the projected stripe pattern and (c) an image captured by the camera. (d) The grid used for multihypothesis code matching. The
horizontal axis represents the projected color transition sequence and the vertical axis represents the detected edge sequence,
both taken for one projector and recti�ed camera scanline pair. A match represents a path from left to right in the grid. Each
vertex (j; i ) has a score, measuring the consistency of the correspondence between ei , the color gradient vectors shown by the
vertical axis, and qj , the color transition vectors shown below the horizontal axis. The score for the entire match is the summation
of scores along its path. We use dynamic programming to �nd the optimal path. In the illustration, the camera edge in bold italics
corresponds to a false detection, and the projector edge in bold italics is missed due to, e.g., occlusion.

global optimizationtechniquethat accountsfor occlusions,
shadows,anddiscontinuities.

Speci�cally, aglobalmatchhypothesis� betweenthepro-
jectedtransitionsequenceQ andobservededgesequenceE
is de�ned asasequenceof integerpairs

� =
��

j 1

i 1

�
;
�

j 2

i 2

�
; : : : ;

�
j �

i �

��
(1)

where� is thenumberof integerpairsof � , j 1 < j 2 < : : : <
j � , andi 1; i 2; : : : ; i � aredistinct from eachother. Eachin-
tegerpair (j k ; i k )T indicatesthatedgeei k correspondsto the
transitionqj k .

The match� is equivalent to a path in a 2D grid, as il-
lustratedin Figure2(d). The horizontalaxis representsthe
projectedtransitionsequenceQ andthe vertical axis repre-
sentstheobservededgesequenceE. Thematch� represents
apathfrom left to right in thegrid, intersectingeachrow and
eachcolumnnomorethanonce.

Thequalityof amatchis computedby assigningeachver-
tex (j ; i ) a score,score (qj ; ei ), measuringthe consistency
of thecorrespondencebetweenedgeei andtransitionqj . The
speci�c de�nition of score (qj ; ei ) is describedin Section4.

The scoreof the entirematch� is the summationof scores
of all theverticesin � , de�ned as

� (� ) =
�X

k=1

score (qj k ; ei k ) (2)

Theoptimalmatchis thereforede�ned as

� � = argmax
�

f � (� )g (3)

In general,thepossiblepathsrepresentedby the� 's maygo
up anddown andhave disconnectedcomponentsdueto oc-
clusion,textureedges,etc. Therefore,thespaceof all possi-
ble matchesis enormous,of sizeO(M N ). A commontech-
niquefor makingthisoptimizationproblemtractableis to in-
troduceanassumptionof depth-ordering,or monotonicity[1]

i 1 < i 2 < : : : < i � : (4)

With this assumption,Eq. (3) may be solved ef�ciently us-
ing dynamicprogramming[1, 24, 17, 11, 2, 10, 22, 4]. The
monotonicityassumptionshouldbeusedwith care,however,
since it is violated in the presenceof occlusions,and can
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produceartifacts. In practice,we have observed that viola-
tionsof themonotonicityassumptionresultin dropouts,i.e.,
portionsof the scenethat are not reconstructed.We show
how this problemcanbe addressedby useof a multi-pass
dynamicprogrammingtechnique.First,however, we review
thebasicsof dynamicprogrammingin thefollowing subsec-
tion.

3.1 Corr espondenceby dynamic programming

Weadoptanotationsimilarto thatof Coxetal. [11]. Let Gj ;i

bethesub-gridde�ned by [0; j ] � [0; i ], and� �
j ;i betheopti-

mal pathin Gj ;i . Threepossiblecon�gurationsof � �
j ;i exist:

(1) it consistsof vertex (j ; i ) andtheoptimalpath� �
j � 1;i � 1

in Gj � 1;i � 1, (2) it is entirelyin thesub-gridGj � 1;i , or (3) it
is entirely in Gj ;i � 1. In the latter two cases,� �

j ;i = � �
j � 1;i

or � �
j ;i = � �

j ;i � 1, respectively. Consequently, � (� �
j ;i ) maybe

recursively computedas

� (� �
j ;i ) =

8
>>>><

>>>>:

0; if j = 0 or i = 0;

max

8
<

:

� (� �
j � 1;i � 1) + score (qj ; ei );

� (� �
j � 1;i );

� (� �
j ;i � 1)

9
=

;
;

otherwise
(5)

The cost of the optimal solution � � to Eq. (3) is given by
� (� �

N ;M ), andevaluatingevery � (� �
j ;i ) takesO(M N ) space

andtime. � �
N ;M is computedby tracingbackthroughthecost

matrix [11], which takesO(M + N ) time. A commontech-
niqueto reducethecomplexity is to restrictthedepthrange
to a user-de�ned value(e.g.,10%of themaximumpossible
depthrange).

3.2 Multi-pass dynamic programming

A fundamentallimitation of matchingalgorithmsbasedon
dynamicprogramming(DP, for short) is the assumptionof
monotonicity, which is violated in the presenceof occlu-
sions. An example of such a violation is shown in Fig-
ure3(a). In the�gure, a thin foregroundelementlies in front
of a backgroundplane. Due to the occlusion,the orderof
projectedtransitionsanddetectededgesis not thesame,re-
sulting in a non-monotonicpath in the grid, shown in Fig-
ure3(b).

The DP algorithm therefore fails to �nd the optimal
path; instead,it will identify the optimal monotonicsolu-
tion. While this solutioncouldpotentiallybequitedifferent
thanthe optimal path, in practicewe have seenthat it cor-
respondsto a monotoniccomponentof theoptimalsolution.
In the caseof Figure3(b), DP identi�es the sub-pathcon-
sistingof (A; B ; C; D ; E). Therestof theoptimalsolution,
sub-path(F; G), is itself monotonicandcanbeidenti�ed by
applyingDP on thesub-gridobtainedby removing columns
(1; 2; 4; 5; 6; 9), and rows (1; 2; 5; 6; 7; 8) from the original

grid. The sameproceduremay be repeateduntil all rows
andcolumnsareexhausted.This procedure,which we call
MultiPassDP, is summarizedasfollows

procedure MultiPassDP(gr id)
set path to be empty;
while (path1 := DP(gr id) is not empty)

path := path
S

path1;
remove columns and rows in path1 from gr id;

return path;
end MultiPassDP

MultiPassDP computesthe monotoniccomponentsof
theoptimalpathin multiplepasses,enablingsolutionof cor-
respondenceproblemswith occlusionsthat arenot possible
with traditionalDP. Insteadof exhaustingthepositivemono-
tonic components,path1, in thegrid, thenumberDP passes
canalsobespeci�edby a user, basedon prior knowledgeof
how many “layers” of structurethescenecontains.

4 One-shotpatternsand scoring functions

Theprevioussectiondescribesthemachineryneededtocom-
pute an optimal surfacegiven a projectedpatternand ob-
served image. Capturingthe shapeof a scenefrom a sin-
gle imageis sometimescalled“one-shot”scanning.In this
section,we discussdesigndecisionsin choosinga patternto
projectanda scoringfunction to be usedin computingthe
optimalone-shotsurface.

4.1 DeBruijn illumination patterns

Choosinga goodpatternto projectis of critical importance
for achieving accuratecorrespondencewith optical triangu-
lation techniques,particularlyone-shotmethods.Assuming
thepatternsandimagesarerecti�ed, thepatternmaybede-
signedfor a singlescanlineandreplicatedto producea 2D
vertical pattern. One designchoice is whetherto project
a smoothor a piecewise-constantpattern. For a one shot
method,encodinginformationin smoothintensityvariations
is dif�cult to do, becausesurfaceshadingcan affect these
variationssubstantially. Thus,wechooseto encodeinforma-
tion onedgesandresortto apiecewise-constantillumination
pattern.

In addition, a good patternhasthe property that corre-
spondencebetweenprojectededgesand observed edgesis
easyto determine. As notedearlier, eachedgeelementof
Q is comprisedof threecolor edgetransitionlabelsthatcan
eachtake values-1, 0, or 1. This valueassignmentimplies
an “edgealphabet”of 27 uniqueedges;however, sincethe
edge(0; 0; 0) is really no edgeat all, 26 edgesareactually
availableto us.

Projecting exactly 26 edges would lead to well-
determinedcorrespondence,sinceeachedgeis unique,but
this would yield very sparsereconstructions.Alternatively,
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Figure 3. Violation of the monotonicity assumption. (a) 9 transitions, q1 ; q2 ; : : : ; q9 , are projected onto a scene comprised of a
thin foreground surface against a background surface, and 8 edges, e1 ; e2 ; : : : ; e8 , are detected. Projected edge q3 is occluded
by the foreground element and not detected. (b) The resulting match grid shows that camera edge indices do not increase
monotonically with corresponding projector edge indices. A multipass DP algorithm can recover the (A,B,C,D,E) path in the �rst
pass, and the (F,G) path in the second pass.

wecouldlay outthesamesequenceof edgesandrepeatthem
asmany timesasneededto �ll out thedesiredtotal number
of projectededges.Consider, though,the caseof an object
that is 26 projectedstripesin width. Thedynamicprogram-
mingalgorithmwill preferto �nd asequenceof matchesthat
correspondsto a singleconnectedsurface(ratherthana set
of scatteredmatches),but dueto therepetitionin thepattern,
asetof equivalentanswerswill arise.In fact,sucharepetive
patterncan result in ambiguity for even larger objects. To
minimize suchambiguity, we insteadwe seekto �nd a se-
quencethat hasa goodwindoweduniquenessproperty, i.e.,
a sequencethathasthedesirednumberof transitionswith a
smallwindow sizen suchthateachsub-sequenceof n con-
secutive stripesis uniquewithin theentiresequence.

Our goalnow is to devisea color sequenceP thatyields
anedgesequenceQ with agoodwindoweduniquenessprop-
erty. First, we considerthe fact that given a color pj , the
next color pj +1 mustbedifferentin at leastonechannelfor
an edgetransitionto occur. If we think of thesecolors as
beingmappedto base-2numbersf 000; 001; : : : ; 111g (i.e.,
black,blue,..., white), thena legal edgeis producedby per-
forming a bitwiseXOR(exclusive or) of a givencolor with a
numberin therangef 001; : : : ; 111g. For example,thecolor
index correspondingto green,010, couldchangeto 110(yel-
low) by �ipping the red channel,i.e., by XOR'ing with 100.
We could thenattainlocal andglobal non-periodicityif we
couldchoosea sequenceof XORpatterns(of which we have
7 to choosefrom) thatareuniquewhentakenin groupsof n
ata time.

De Bruijn sequences[16] areideally suitedto this prob-

R
G
B

Figure 4. Using a de Bruijn sequence, we can generate binary
R, G, and B patterns that combine to make a sequence for
which each three consecutive color transitions are unique.
This example is a complete sequence for k = 5; n = 3, which
is used to generate the results in this paper.

lem. In particular, a k-ary deBruijn sequenceof ordern is
a circular sequenced0; d1; : : : ; dk n � 1, whereeachelement
dj is taken from a set of k valuesand for which any sub-
sequenceof length n appearsexactly once. In our case,
we canconstructup to a 7-ary sequencewith eachelement
dl 2 f 001; : : : ; 111g. Then, we can generatea color in-
dex sequence(p0; p1; : : : p7n ) by choosingan initial color
p0 2 f 000; : : : ; 111g andfollowing theiteration:

pj +1 = pj XORdj (6)

In practice,we only needed125stripesandthusworked
with k = 5; n = 3. We eliminated110 and111 from the
de Bruijn sequence,aswe found that simultaneousred and
greentransitionssuffered the most from residualcrosstalk
errorsafter approximatedecoupling(seeSection4.2). Fig-
ure4 shows a completecolor stripepatterngeneratedin this
manner. Notethatwhile deBruijn sequencesarenotstraight-
forward to derive, they have beenpreviously tabulatedby
researchersin combinatorics. We usegeneratorsavailable
online[28] to obtaindeBruijn cycles.
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4.2 Color edgedetection

After the illumination patternfrom the previous sectionis
projectedonto an object,a camerarecordsan imageof the
re�ected light. In anidealworld, thelight from eachprojec-
tor color channelreachesonly its correspondinglycolored
sensorpixel (e.g., red light is seenonly by red pixels). In
practice,however, eachprojectorcolor channelhassomein-
�uence on all threesensorchannels,a phenomenonknown
ascolorcrosstalk.Thiscouplingis complicatedby theinter-
ventionof a surfacethatmaymodify theprojectorspectrum
in unknown waysbeforeit is observed at the sensor. One
solution would be to assumethat the surface is spectrally
uniform, so that we needonly measurea projector-camera
color crosstalkmatrix that indicateshow mucheachprojec-
tor channelin�uenceseachcamerachannel.Caspiet al. [8],
however, demonstratethata lesssevererestrictioncanwork
fairly well. In particular, they relateobservedcameracolors
to projectorcolorp as:
�
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whereX is theprojector-cameracolorchannelcrosstalkma-
trix, F is the scenealbedomatrix at a point on the surface,
and o is the ambientlight observed by the camerafor the
samesurfacepoint. By pre-multiplyingeachcameracolor
by X � 1, weobtainnew cameracolors:

~s = X � 1s =
�

� r p r + ~o r

� g p g + ~o g

� b p b + ~o b

�
(8)

where~o = X � 1o. Using this model,crosstalkhaslargely
beenfactoredoutsothateachcolorchannelcanbeanalyzed
independentlyandcorrelatedmorecloselyto projectedcol-
ors.

Givena color-correctedcamerascanline,we cannow lo-
calizecolor edgesby looking for local extremain gradients
(1D derivatives) in eachof the color channels.In practice,
however, this will leadto distinct localizationsin eachcolor
channel.Instead,we computea combinedgradientfunction
alonga scanlinethat is comprisedof thesumof thesquares
of the gradientsin eachof the color channels. The edges
arethendeterminedto belocalmaximaof this function,and
their strengthsarethe color gradientvaluesat the localized
edges.

4.3 Edge-basedscoring functions

Wenow considertheproblemof evaluatingamatchbetween
a projectedcolor transitionq andan observed edgee in an
imageby de�ning a scorefunction score (q; e). Let e =
(er ; eg; eb), whereec 2 [� 1; 1] is the1D intensitygradient
of e in channelc, andlet transitionq = (qr ; qg; qb), with qc 2
f� 1; 0; 1g. e andq areconsistentonly if they matchin all
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Figure 5. Consistency measure consistency (qc ; ec) between
projector transition qc and ec . (a) qc = 1, (b) qc = 0, and (c)
qc = � 1.

threechannels.Accordingly, weusethefollowing de�nition
of score :

score (q; e) = min
c2f r ;g;bg

f consistency (qc; ec)g (9)

whereconsistency (qc; ec) 2 [� 1; 1] measuresthe agree-
mentbetweencorrespondingcolor channelsof q ande. For
example,whenqc = 1, consistency (1; ec) shouldbe1 if
ec is suf�ciently large,0 if jecj is suf�cient small,andneg-
ative if ec is negative. More formally, consistency (qc; ec)
is de�ned by the following equation,Eq. 10(a), and illus-
trated in Figure 5(a). For the casesof qc = 0 and � 1,
consistency (0; ec) and consistency (� 1; ec) are simi-
larly de�ned in Eq. 10(b,c)and illustratedin Figure5(b,c)
respectively.

consistency (1; ec) = CLAMP( ec � �
� � � ; � 1; 1) (a)

consistency (0; ec) = CLAMP(1 � j ec j� �
� � � ; � 1; 1) (b)

consistency (� 1; ec) = consistency (1; � ec) (c)
(10)

where

CLAMP(x; x0; x1) =

8
<

:

x0 if x < x0;
x if x0 < x� x1;
x1 if x1 < x:

and0� � < � � 1 aresoftthresholdsthatarechosenbasedon
theuncertaintyof edgemeasurement.In particular, gradients
in therangeof [� ; � ] canbeclassi�edwith fractionalvalues
that re�ect their uncertainty, whereasgradientswith abso-
lute valuesthat are suf�ciently large or small are assigned
either -1, 0, or 1. The decisionon how to label eachedge
is deferredto theglobaloptimizationstage.In thedegener-
atedcasewhen� = � , thegradientsareclassi�edwith hard
thresholds, asin [6]. Thelargerthevalueof � � � , themore
uncertainconsistency . Lesscertainconsistency measures
areusefulwhentherearesigni�cant differencesin theinten-
sity of projectedandre�ected patterns,due for instanceto
noise,shading,or surfacetexture.

Note that edgepair (q; e) will get matchedby DP only
if score (q; e) is positive andit will not get matchedif any
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of its channelconsistency measuresis negative. As a result,
clampingof negative consistency valuesis not necessaryin
theory, but in practiceavoidspossiblenumericalproblemsof
largenegative numberswhen� and� andnearlyequal.

5 Color-codedspacetimeanalysis

One-shotpatternsareparticularlyuseful in caseswhereall
measurementsmust be capturedat the sametime, for in-
stancein thecaseof reconstructingthe instantaneousshape
of amoving object.Staticscenes,on theotherhand,provide
the opportunityto capturemultiple measurements.Instead
of projectinga singlepattern,it is possibleto projectseveral
patternsto improveaccuracy or completenessof theresulting
reconstruction.

Oneapproachto increasingtheresolutionis to take a set
of imagesin which the one-shotprojectorpatternis shifted
a pixel to the right betweenphotographs,followedby com-
bining theone-shotresultfor eachimageinto a singlerange
map.This approach,while feasible,doesnot make themost
of theopportunityto take multiple shots.One-shotscanning
techniquesaresensitive to errorsasa resultof surfacedis-
continuitiesand texture, both of which can bias the calcu-
latedlocationof edgesor introducefalseedges.Curlessand
Levoy [12] describethis phenomenonin detail (for thecase
of determiningthe centerof a Gaussian,rather than loca-
tion of anedge)anddemonstratehow theseproblemsaread-
dressedthroughtheuseof spacetimeanalysis. In their case,
a laserstripeis projectedontoanobjectandis sweptslowly
over its surface.There�ected light is capturedby a camera
to producea sequenceof imagesduring the sweep.Track-
ing theintensitiesrecordedfor asingleline of sightfrom the
sensorgivesatemporalpro�le of light re�ectedfrom asingle
point on thesurface.Thepeakof this pro�le correspondsto
thetimeatwhich thestripepassesover thatpixel andcanbe
estimatedto sub-pixel accuracy. Theadvantageof thespace-
time approachis that it is far lesssensitive to discontinuities
andtexture,andhasbeenshown to producesuperiorrecon-
structions[12].

A disadvantageof previous applicationsof spacetime
analysisis that a very large numberof imagesarerequired
to ensurethatthestripepassesovereverypixel in theimage.
We show thatspacetimeanalysismaybeadaptedandincor-
poratedinto our multi-hypothesiscodematchingframework
to generatehigh-quality rangedata using a much smaller
numberof imageswith the useof a projectorinsteadof a
laserscanner. As in theone-shotcase,we�rst needto choose
boththeilluminationpatternsandthescoringfunction.

5.1 Smoothed,shifted deBruijn patterns

Figure 6(a) illustrateshow the spacetimemethodworks in
thecontext of shifting color stripepatterns.Theshift in the

patternover time de�nes a temporalpro�le for eachpro-
jectedray andeachpixel in the image. Thus,by matching
sensorpro�les to projectorpro�les, we canreconstructthe
surface. In general,eachsensorpro�le will triangulateto a
projectorline of sight that is betweenprojectorpixels. To
do sub-pixel interpolatedmatching,we requirethat thepro-
jectionpatternsbesmoothrelative to therateof shifting the
pixels. In addition,weseekto projectasfew imagesaspossi-
blewhile allowing reliablecorrespondenceto bedetermined
betweenprojectorandsensorpro�les. For thesereasons,we
employ a smootheddeBruijn color pattern;i.e.,we take the
one-shotcolor pattern,smoothit with a Gaussian�lter , and
projectshiftedcopiesover time.

Eachcamerapixel pro�le hasa numberof color transi-
tions, dependingon the numberof patternsprojectedand
the ratev at which the patternshifts. If the pro�le is long
enoughto containat leastn transitions,wheren is the or-
der of the de Bruijn sequence,the correspondencebetween
imageandpatternmaybeuniquelydeterminedin principle,
basedon thewindoweduniquenesspropertyof deBruijn se-
quences.However, we canusefewer framesandallow DP
to resolve theambiguity. In fact,by de�ning a score func-
tion for spacetimepatterns,we canagain employ themulti-
hypothesiscode matchingtechniqueto derive an optimal
match, that betteraccountsfor noiseand other sourcesof
measurementerror, asshown in Figure6(b).

5.2 Spacetimescoring function

In spacetimeanalysis,insteadof comparingprojectededges
to observededges,we comparethetemporalpatternat each
projectorpixel to thetemporalpatternrecordedateachcam-
era pixel. We can still describethe matchingproblem in
termsof a scoring function score (q; e), but now the ele-
mentsqc and ec (c 2 f r; g; bg) are eachvectorsin a T-
dimensionalspace,whereT is the numberof framesin the
sequence.In principle,aftercolor calibration,we shouldbe
ableto measurehow closetheprojectorandcamerapatterns
arebycomputingthedifferencebetweenec andtheestimated
re�ection � c � qc + ~oc (seeEq. 8). Since� c and ~oc areun-
known, wecanestimatethebestvaluesthatminimizediffer-
encesbetweenmeasurementandprediction.A shortcoming
of this approachariseswhenec is on anobliquesurface,for
example,closeto thetarget'scontourtangentto thecamera's
viewing direction,whereec is usuallyvery small compared
to the pixel colorson a frontal parallelsuface. In this case,
thedifferencebetweenqc andec is no larger thankeck2 by
setting� c = 0 and~oc = 0. Theresultis thatbadmatchesare
not penalizedsign�cantly for low intensityec 's. To counter
thisproblem,wehavedesignedasimplesymmetricperchan-
nel cost(“inconsistency”) function:

cost c(qc; ec) = min
a;b

k a � qc + b� ~1 � ec k2

+ min
a;b

k a � ec + b� ~1 � qc k2 (11)
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Figure 6. Colorcoded spacetime analysis. (a) The curves represent projected and re�ected intensity pro�les in the red channel.
(The green and blue channel pro�les are not shown to simplify the �gure .) As the illumination pattern shifts to the right in time,
we can track a single line of sight from the projector to a point on the surface. The light re�ects from that surface point to the
camera along a sensor line of sight. We can see that, in the continuous case, the projection pattern will be reproduced over time
at the sensor. In the discrete case, the sensor records discrete samples at times t 1 ; : : : ; tT , which can later be matched to the
projection pattern. (b) The temporal pro�les , instead of spatial edges, are matched using dynamic programming. The horizontal
axis shows the projected r; g; bchannels separately and as a combined color pattern. The vertical axis shows the recorded color
patterns. The grayscale image illustrates a score grid through which DP �nds a globally optimal path. (The score is in proportion
to the darkness.) In this example, we apply the depth range constraint, which implies that grid vertices outside of a prescribed
diagonal band are ruled out by assigning their scores to be 0.

wherea;barescalarcoef�cients independentlyoptimizedin
eachof theaddends,and~1 is a T-dimensionalvectorof 1's.
Thetotalcost,cost (q; e) is thenthesumoverall threechan-
nels.Notethatthesmallercost (q; e) is, themoreconsistent
qandeare.Sincethematchingproblem,Eq.3, is formulated
asa maximizationover positive numbers,thescore (q; e) is
de�ned as

score (q; e) = C0 � cost (q; e) (12)

whereC0 is globalconstantbetweens = min
q;e

f score (q; e)g

and�s = max
q;e

f score (q; e)g. RecallthatDP will not match

(q; e) pairswith negative scores.If C0 < s, score (q; e) is
negative for every (q; e) pair andtheoptimalmatchbetween
projectedandobserved edgesequencesis simply empty. If
C0 > �s, score (q; e) is positive for every (q; e) pair andDP
will try to matchevery possibleedgepair without violating
monotonicityconstriant.In short,too smallC0 will resultin
falsedropoutsandtoolargeC0 mayintroducefalsematches.
In practice,we chooseC0 = s + 0:2(�s � s), which works
well for ourexperimentsetup.

5.3 Sub-pixelmatching

The dynamic programming technique only gives cam-
era and projector correspondenceup to pixel resolution.
Sub-pixel correspondencecan be obtainedusing a post-
processingstepso that eachcamerapixel can be matched
betweenprojector pixels. Speci�cally, for each corre-
spondingpair of camerapixel ei and projector pixel qj

generatedby DP, if score (qj ; ei ) is larger than both
score (qj � 1; ei ) and score (qj +1 ; ei ), a parabolais �t to
thethreepoints(j � 1; score (qj � 1; ei )) , (j ; score (qj ; ei )) ,
and(j + 1; score (qj +1 ; ei )) andthe optimal matchingpo-
sition is obtainedby computingthe peakof the parabola.
If score (qj ; ei ) is not larger than its neighbors, both
score (qj � 1; ei ) and score (qj +1 ; ei ) are checked to see
whetherthey are local maxima. If again no peakis found,
the procedurerepeatsoncemore,expandingin both direc-
tions. If still nopeakis found,theintegersolutiongenerated
by DP is retained.

6 Results

We have developedan experimentalsystemfor testingour
one-shotandspacetimeshapecapturemethods. The hard-
wareconsistsof a KodakDCS520digital still cameraanda
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(a) (b) (c) (d)

Figure 7. Comparison between DP and CFG [6]. (a) Photo of original Einstein bust. (b) Stripe image used for oneshot
reconstruction. The bust was photographed on its side, but the image shown here is rotated by 90 degrees for convenient
visualization. (c) Shaded rendering of the CFG reconstruction. (d) Shaded rendering of the DP reconstruction. In areas of high
curvature, false edges are more prevalent, and result in dropouts in the CFG reconstruction, whereas DP is free to ignore such
edges in pursuit of a global optimum.

CompaqMP1800digital projector. To simulateresolutions
morecomparableto a videocamera(thesensortypewe ul-
timatelyplan to usefor realtimecapture),we downsampled
theKodakimagesby afactorof 2X in eachdimension,yield-
ing 864x576images. The projectoroperatesat 1024x768
resolution. For geometriccalibration,we imagea checker-
boardtexturedplanein avarietyof poses.For eachpose,we
also project a distinct checkerboardpatternonto the plane
andtake anadditionalimage.Theimagestakenwithout the
projectedpatternareusedto estimatethe cameraintrinsics
andplaneposes(seeBouguet[5]). For the remainingim-
ages,wecancomputethe3D coordinatesof thetheprojected
patternfeatures(correspondingto projectorrays) and thus
calibratetheprojector. We employ a linearprojective model
for both the cameraandprojector. In addition, to improve
color channelalignmentin thedigital camera,we imagethe
checkerboardtexturedplaneanadditionaltimeandcompute
separate2D homographiesfor theredandbluechannelsrel-
ative to thegreen.

TheX matrix in Eq.7 is approximatedby projectingsolid
red,green,andbluepatternsto a fronto-parallelwhite board
andcapturingthreeimagesaccordingly. Themeancolorsof
thethreecapturedimagesconstitutethethreecolumnsof X .

Wemustnotethat,while wehavetakensomemeasuresto
reducecolor misalignmentsandaccountfor color crosstalk,
westill observesomeresidualmisalignmentsandnon-linear
crosstalkbehaviors that have not beenaccountedfor. As a
result, someof the renderedreconstructionsshown in this
sectionexhibit coherentridgesatcolortransitionboundaries.
We arecurrentlydevelopingtechniquesfor calibratingaway

theseresidualartifacts.

6.1 One-shotScanning

We have testedthe one-shotcapturemethodon a variety
of scenes. In eachcase,the projectedpatternconsistsof
de Bruijn generatedsequenceswith 7 pixel wide stripes
(roughly150stripestotal).

First,wecomparethedynamicprogrammingapproachto
theCrystalFitting andGrowing(CFG)algorithmdeveloped
by Boyer andKak [6], for which resultsareshown in Fig-
ure7. CFG�rst labelseachedgetransitioncodeby comput-
ing thesignsof intensitytransitionsin thethreechannels,fol-
lowedby matchingthe labelededgesequenceby iteratively
�nding thelongestmatchingsub-sequences.In practice,we
have foundthis techniqueto befragile in thepresenceof er-
roneousedgelabels,resultingin outlier pointsandholesin
the reconstructionasshown in the �gure. One-passDP, on
the otherhand,is able to copewith thesemis-labelingsby
searchingfor a globally optimal, monotonicsolution. The
resultis fewerholesin thereconstruction.

The Einstein bust in the previous example is fairly
“white,” similar to the color crosstalkcalibrationtarget. To
testsensitivity to fairly non-whitesurfaces,wetookone-shot
imagesof humanhands(Figure1) andof a paintedporce-
lain cat (Figure 8). In both cases,the reconstructionsare
fairly accurateandcomplete,including,for instance,regions
aroundthecat's rednoiseandover its orangebody. Partic-
ularly darkareasresultin holesin thereconstructions,since
edgesin theseareasarenotdetectedby thesensor.
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(a) (b) (c)

Figure 8. Sensitivity to surface re�ectance . (a) Photo of original porcelain cat model. (b) Stripe image used for oneshot
reconstruction. (c) Shaded rendering of the DP reconstruction. Although this model is not “colorless” the reconstruction behaves
reasonably well. Completely black regions, of course, lead to range dropouts.

Notethatonenoticeableartifact in Figure1 is theoccur-
renceof falseedgeextensionsat theboundaryof theobject.
Thisartifactarises,becauseDP is freeto addpointsontothe
boundarywhile still increasingthe score.Thresholdingout
low intensitygradientsminimizesthe effect. Further, these
pointscanbedownweightedwhenused,e.g.,to reconstruct
surfaces[30]

Finally, to demonstratethe multi-passDP method,we
show a simpleexamplethat violatesthe monotonicitycon-
straint: a �nger in front a pieceof cloth (Figure9). Using
a singleDP pass,the�nger is lost in favor of reconstructing
the cloth background.The secondpass,however, recovers
muchof thelost �nger. Notethatthisexample,togetherwith
Figure1, alsodemonstratesthatour scanningmethodis ap-
plicableto sceneswith disconnectedcomponents,whichcan
notbereconstructedby methodsthatrely on traversingedge
graphsspatiallywithin a singleconnectedcomponent(asin
thecaseof, e.g.,Proesmansetal. [26, 25]).

In theabove experiments,eachrangemaptakeslessthan
1 minute to computeof�ine usinga 900 MHz PentiumIII
PC. The exact time generallydependson the numberof
edgesdetectedandthedepthrangeof thescene.Reconstruc-
tionstypically containtensof thousandsof rangepoints,with
denseverticalsamplingalongstripeedgesandcomparatively
sparsesamplinghorizontally. For atriangulationangleof ap-
proximately17 degrees,and an x-y �eld of view of about
40cmx 25cm, we have found plane-�t accuracy to have a
standarddeviationof 0.18mm.

6.2 SpacetimeAnalysis

To show the improvementpossibleusing spacetimeanaly-
sis for staticscenes,we have donea moredetailedstudyof
the Einsteinbust, asshown in Figure10. In this case,we

projecta shiftedsequenceof 7 patternsonto the bust. For
comparisonwith a non-spacetimemethod,we �rst choose
thesamepatternasin theone-shotmethod,shift thepattern
by one pixel 7 times, and independentlyestimatea range
map for eachimage. We then combinetheserangemaps
into a singlehigh resolutionrangemapasshown. For the
spacetimemethod,we blur the samepatternwith a Gaus-
sian �lter (� = 1.5 pixels), shift it by two pixels at a time,
andperformthe reconstructiondescribedin Section5. As
the �gure shows, thespacetimemethoddoesa substantially
betterjob of resolving�ne detail. In particular, theedgede-
tectionmethodusedin theone-shottechniqueis susceptible
to therapidshadingchangesin highcurvatureareas,whereas
thespacetimetechniqueis muchlessso. Further, while the
plane-�t accuracy of themultiple one-shotmethoddoesnot
improve with more images,the spacetimemethodexhibits
signi�cantly improved accuracy, down to a standarddevia-
tion of 0.048mm,almostfour timeslessnoisy.

7 Conclusionand Futur eWork

This paperpresentsa generalmulti-passdynamicprogram-
mingalgorithmto solve themultiplehypothesiscodematch-
ing problemin structuredlight scanning.The algorithmis
appliedto two speci�c scanningmethods:a one-shotscan-
ning methodsuitable for measuringrangedata for mov-
ing objects,anda spacetimemethodwhich generateshigh-
resolutionrangedatafor staticscenes.

This work haspotentialfor improvementand future re-
searchin several directions. In the short term, we hopeto
mitigatetheeffectsof theoccasionalridgesinducedby color
edges,as notedin the previous section. We believe that a
self-calibrationin which theprojectedcolorpatternsare�rst
observed by the cameraandcharacterizeddirectly in cam-
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eraspacecould be employed. We alsohopeto implement
a realtimecapture(possiblyof�ine processing)systemusing
synchronizedvideoandprojection. In addition,we hopeto
experimentwith usingspacetimeanalysisto reducethenum-
ber of imagesrequiredto reconstructshapes. Finally, we
hopeto explore thereconstructionof 3D shape,re�ectance,
andmotionmodelsusingthesystemdescribedin this paper
asastartingpoint.
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(a) (b) (c) (d)

Figure 9. Comparison between onepass DP and twopass DP. (a) Photo of original scene of a hand and �nger in front of a cloth
background. (b) Stripe image used for oneshot reconstruction. (c) Shaded rendering of a onepass DP reconstruction. (d)
Shaded rendering of a twopass DP reconstruction. The second pass recovers most of the �nger that violated monotonicity and
was not recoverable in a single pass. The “double�nger” hole in the background corresponds to projector and sensor visibility
shadows.

(a) (b) (c)

(d) (e) (f) (g)

Figure 10. Comparison between multiple oneshots and spacetime analysis. (a) Stack of 7 stripe images taken of the Einstein
bust for use with spacetime analysis. (b) Shaded rendering of reconstruction produced by combining 7 oneshot results (using
shifted oneshot patterns). (c) Shaded rendering of reconstruction produced by spacetime analysis (using the patterns in (a)). (d)
and (e) Renderings of the left eye (on right side of the (b) and (c) images) using multiple oneshots and spacetime, respectively.
Notice the improved resolution in the wrinkles under spacetime. (f) and (g) Renderings of the letters “mc” on the base of the bust
using multiple oneshots and spacetime, respectively. Notice the crisper, less noisy reconstruction under spacetime.

13


