
Copyright © 2006 by the Association for Computing Machinery, Inc.
Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, or to redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from Permissions Dept, ACM Inc., fax +1 (212) 869-0481 or e-mail
permissions@acm.org.
© 2006 ACM 0730-0301/06/0700- $5.00 0826

Model Reduction for Real-time Fluids
Adrien Treuille1 Andrew Lewis1 Zoran Popović1,2

1University of Washington 2 Electronic Arts

Abstract

We present a new model reduction approach to fluid simulation,
enabling large, real-time, detailed flows with continuous user inter-
action. Our reduced model can also handle moving obstacles im-
mersed in the flow. We create separate models for the velocity field
and for each moving boundary, and show that the coupling forces
may be reduced as well. Our results indicate that surprisingly few
basis functions are needed to resolve small but visually important
features such as spinning vortices.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;

Keywords: Model Reduction, Proper Orthogonal Decomposition,
Flow with Boundaries

1 Introduction

Computer graphics researchers have developed strikingly realistic
models of fluid phenomena such as curling smoke and splashing
water for cinematic special effects. A much less explored domain
is real-time interactive fluid simulation, which opens new avenues
for training, computer games, and interactive media. Simulation
steps must occur in fraction of a second, handle fluid-object in-
teraction, and produce visually convincing fluid flows that capture
important coherent features such as turbulence. To reach such rates,
simulation time should be proportional to the rendering complexity,
not the size of the computational domain. Further, since interactive
simulations do not have preordained length, it would be useful to
have unconditional stability and controlled energy dissipation. To
date, there is no known fluid model that enjoys these properties.

This work attempts to fill this gap with a model reduction ap-
proach to fluids. We begin by using an accurate off-line solver to
produce a set of high-resolution fluid simulations representative of
the expected user input. These velocity fields are distilled into a
small basis of size proportional to the system’s principle modes
of variation. We then project the fluid equations onto this low-
dimensional basis with techniques drawn from model reduction.
After these precomputations, we can simulate the velocity field
very quickly through the subspace, achieving simulation runtime
costs polynomial in the number of basis states, but independent of
the number of simulation voxels. Our algorithm also can preserve
the energy in the basis, allowing for controlled energy dissipation.
Finally, multiple moving objects may be immersed in the flow at

Figure 1: An interactive fluid simulation of a car driving through 4000 leaves runs at
24 frames/second on a 256×64×128 grid. (Car model courtesy of Digimation.)

runtime, and fluid-object interaction can be handled entirely in the
reduced space.

Model reduction has unique properties not present in full-
dimensional simulations. Complex phenomena can be observed
on large grids (e.g. the wake of a speeding car) and the number
of variables is essentially proportional to the underlying degrees of
freedom (e.g. the position and direction of the cars). As such, each
model represents a problem-specific subspace of all simulations and
is inherently less accurate or general than full dynamics. However,
our technique has very different time complexity as well: even if
we choose twice or ten times higher spatial resolution problems,
the reduced algorithm remains just as fast. In fact, in our examples
our method is not bound by the size of the computational domain
but by the computer memory and cost of rendering.

Depending on the rendering choice, we couple our reduced
simulator with either immersed particles (textured smoke sprites,
dust, leaves), or a grid-based density simulation. Immersed
particles, which are used extensively in games to reduce rendering
costs, are especially well suited to our technique as they need only
sparsely query the velocity field. Density simulation and rendering
both require a pass through the entire grid, and therefore dominate
any fluid computations in the reduced space. Importantly, for both
particles and densities, our algorithm is output-sensitive: the cost
of simulation is proportional to the cost of rendering.

Contributions. We present a new algorithm for the reduced-
dimensional simulation of incompressible fluids tailored for inter-
active graphics applications; we describe how complex moving and
fixed boundaries can also be handled in the reduced space. Our
algorithm allows for output-sensitive simulation of higher resolu-
tion and more complex fluid dynamics than previously possible in
real-time computer graphics.

2 Related Work

In graphical fluid dynamics, an important step towards interactiv-
ity was taken by Stam [1999] with the introduction of the Sta-
ble Fluids algorithm. This algorithm is unconditionally stable, al-

826

lowing for long timesteps and fast simulations. Subsequent work
aimed at speeding up this algorithm through hierarchical space de-
composition [Losasso et al. 2004] or computation on non-uniform
meshes [Feldman et al. 2005; Elcott et al. 2005] to date has not
achieved real-time simulation of high-resolution fluids. Solving the
fluid equations on the hierarchical spatial subdivision [Losasso et al.
2004] has yielded impressively high resolution results, but the high
per-step computation cost prevents this method from being used in
real-time contexts. Under very specific conditions with strictly pe-
riodic boundaries, Fourier methods [Stam 2001] can produce very
fast performance. While hierarchical, non-uniform, and Fourier
methods can provide substantial speedups, they still require compu-
tation proportional to the size of the domain. Pure vortex methods
[Park and Kim 2005] are not restricted to a particular domain, but
the effective resolution coarsens as the particles are spaced farther
apart. Vortex methods can also present difficulties handling bound-
aries and diffusion. Hybrid grid and vortex methods have also been
proposed [Selle et al. 2005] although the intent is to produce more
faithful dynamics, not faster simulation. Both grid and vortex-based
methods are at best linear in the velocity sampling. In our method,
by contrast, the number of variables is essentially proportional to
the underlying degrees of freedom, such as the number of possible
input forces.

Various fluid simulation methods have been mapped to the GPU
as a stream processor including a Lattice Boltzman Method [Li
et al. 2003], Coupled Map Lattice [Harris et al. 2002], semi-
Lagrangian solver with boundaries [Wu et al. 2005], and a Poisson
solver [Krüger and Westermann 2003; Bolz et al. 2003; Goodnight
et al. 2003]. These algorithms have the same time complexity as
their CPU versions and do not offer resolution-independent sim-
ulation. They can however achieve large constant factor speedup
over CPU algorithms, often producing real-time performance for
medium-size problems. We use the GPU for our examples with
density advection and rendering; however our method’s major com-
putational savings come from our reduced simulator which is com-
pletely implemented on the CPU.

Model reduction is an increasingly important technique in com-
puter graphics. It has been used to reduce a wide range of prob-
lems, ranging from global illumination to elastostatics and dynam-
ics. James and Fatahalian [2003] precompute nonlinear deforma-
tion responses to a finite set of user impulses and apply dimension
reduction using PCA. Their approach restricts the range of possi-
ble runtime interactions to a small discrete set of pre-selected im-
pulses. Barbič and James [2005] present a more general approach
for FEM models that allows general runtime forcing within the
reduced-dimensional subspace. Like us, they exploit the property
that a dynamical system’s polynomial degree remains unchanged
under model reduction. Our work on reduced fluids was greatly
influenced by this work. Multilinear model reduction [Wang et al.
2005] has also been used as a compression tool for non-interactive
time-sequences. Within computer graphics, model reduction has
not been previously applied to fluid simulation.

In the applied mathematics literature, as well as in computa-
tional fluid dynamics (CFD), dimensional model reduction is well
studied [Lumley 1970]. These methods use Galerkin projection to
yield systems of differential equations involving fewer equations
and fewer unknown variables. The reduced equations can be solved
much more quickly than the original problem, at some accuracy
cost. These methods also appear in literature under the names of
proper orthogonal decomposition (POD), Karhunen-Loéve decom-
position and subspace integration. In CFD, these methods are pri-
marily used to study organized spatial characteristics in a flow, i.e.
coherent structures [Holmes et al. 1996], and have been used to de-
sign flow control systems since they provide a more controllable de-
scription of the system dynamics [Rowley et al. 2006; Ausseur et al.
2004]. Sirovich [1987] introduced snapshot POD, which essentially

constructs a reduced model from a sequence of instantaneous spa-
tial fields acquired at different times. To increase accuracy, these
models can be subsequently calibrated to the observed data [Cou-
plet et al. 2005]. After a long-time integration of dissipative flows,
POD-based simulation methods exhibit drifting inaccuracies that
have been handled with non-linear Galerkin projection [Marion and
Temam 1989] and viscosity method correction [Sirisup and Karni-
adakis 2004]. Extended POD methods [Maurel et al. 2001] were
developed to study correlated events in turbulent flow that are not
directly related to energy.

Treatment of moving boundary conditions is not as extensively
studied for model reduction. A straightforward way to treat moving
boundaries is to construct a separate set of bases for each possible
boundary configuration [Schmit and Glasuer 2002]. This approach
leads to an explosion of the required bases unless the boundary
movement is restricted to a small subspace. For flows with periodic
boundaries, and with inherent symmetries within the flow dynam-
ics, it is possible remove uniform translation modes [Rowley et al.
2003; Rowley and Marsden 2000]. In a restricted case when analyz-
ing a single boundary in free flow, one can form the reduced basis
in the frame of reference of the boundary as it is moved through
various angles of flow attack [Ausseur et al. 2004]. Similarly, when
a single moving boundary moves along a single dimension such as
pistons within the engine cylinder, stretching and aligning of the
flow basis can allow for a reduced model [Fogleman et al. 2004].
We are not aware of any references on reduced methods that deal
with multiple moving boundaries, or boundaries that move in un-
predictable ways.

3 Model Reduction Overview

At the heart of our fast fluid simulator is a model-reduced simula-
tion of the incompressible Navier-Stokes equations. In this section
we give a general overview of dimension reduction and discuss its
connection to physical simulation.

Dimension reduction means representing a vector in high dimen-
sional space u ∈ Rn with a corresponding vector in a much lower
dimensional space r ∈ Rm. While necessarily approximate, such a
representation can be quite useful for compressing redundant infor-
mation in u. To move between the two spaces we need a projection
operator P : u 7→ r and its inverse P−1 : r 7→ u. The former cannot
be one-to-one because m < n by assumption.

For some applications, dimension reduction alone is a useful
technique. In physical simulation, however we are interested not
only in the state u, but also in its time evolution, typically described
by an ordinary differential equation: u̇ = F(u). (The dot indicates
a time derivative.)

The link between dimension reduction and physics is model re-
duction. We seek an analogous evolution equation for the reduced
state: ṙ = F̂(r). Ideally, this equation should be computable in
closed form without resorting to the high-dimensional space. The
standard solution is to compute the Galerkin projection of F onto
the reduced dimensional space

F̂ = P◦F ◦P−1. (1)

We now consider an important special case: suppose the reduced
vectors cover an m-dimensional linear subspace of Rn. That is,
there exists an n×m matrix B such that u = Br. Further, if B is or-
thonormal then r≈ BT u, with equality when u lies in the subspace
spanned by B. Armed with this linear subspace, consider the case of
linear differential equation u̇ = Mu. The Galerkin projection of M
yields another linear differential equation ṙ = BT MBr. Moreover,
we can precompute the m×m matrix product BT MB to simulate
without resorting to the high-dimensional space. More generally,
if F is an n-dimensional polynomial, then F̂ is an m-dimensional

827

polynomial of the same degree which can be computed in closed
form without resorting to the high-dimensional space [Barbič and
James 2005]. We will use this important fact several times.

4 Model Reduction of Fluids

We now explain how to apply model reduction specifically to cre-
ate a high speed fluid simulator. Our first task is to create a low-
dimensional basis B for the simulation. We assume that the do-
main has been spatially discretized so that all velocity fields can be
represented as n-dimensional vectors. In practice we use the stan-
dard MAC-style discretization [Foster and Metaxas 1996], but our
technique is general enough to handle arbitrary arrangements such
as irregular tetrahedral meshes [Feldman et al. 2005; Elcott et al.
2005].

We also assume a set of example velocity fields {ui}, forming
a representative basis U of the interactions expected in the system.
These example states typically are snapshots drawn from a set of
off-line, full-dimensional fluid simulations. We also assume that
the velocity fields in U all satisfy two important properties:

1. The states are divergence free: ∇ ·ui = 0.1

2. The states satisfy free-slip boundary conditions: for all fixed
surface points x with normal n, we have ui(x) ·n = 0.

We seek a low-dimensional orthonormal basis B = [û1, û2, . . . , ûm]
(m� n) that minimizes the square reconstruction error

||U−BBTU ||2F , (2)

subject to the basis states ûi preserving the two constraints above.
Here || · ||2F denotes the sum of squared matrix entries, known as the
Frobenius norm.

Equation (2) can be minimized by setting B to the first m eigen-
vectors of the matrix UUT , effectively performing a Principal Com-
ponent Analysis (PCA). Further, the vectors produced by PCA sat-
isfy the above constraints without modification. To see why, note
that both constraints are linear. That is, for each constraint there
exists a constraint matrix C whose null space is exactly the set of
vectors satisfying the constraint (in particular CU = 0). Now sup-
pose that ûi is a vector in B. Then by definition UUT ûi = λiûi,
which implies that CUUT ûi = λiCûi = 0. So the basis vector ûi
will satisfy the constraints as long as the eigenvalue λi is nonzero,
as it will be in general. Figure 2 shows the basis constructed for a
domain with a fixed yin-yang boundary. Notice that all basis states
satisfy both the divergence and boundary constraints.

5 Simulation

Given the reduced velocity basis B, we now present an algorithm
capable of simulating the incompressible fluid equations through
the reduced subspace. The incompressible Navier-Stokes equations
can be written as:

u̇ = −(u ·∇)u − ν∇2u + ∇p + f, s.t. ∇ ·u = 0,
(A) (B) (C) (D) (C)

(3)

where u denotes the velocity field, p the pressure, ν the viscosity,
and f the external forces. Following Stam [1999], we use a tech-
nique called operator splitting to decompose the simulation into a
series of separate steps, each one tackling a different term in Equa-
tion (3). These steps are: (A) Advection, (B) Diffusion, (C) Pro-
jection, and (D) External Forces. In the remainder of this section,
we explain how each of these four steps can be simulated on the
subspace B, with a per-timestep time complexity that depends only
on the basis dimensionality.

1Divergence-free in the discrete sense: every voxel has zero net flux.

(1) (2) (3)

(4) (5) (6)

Figure 2: First 6 basis states for a 512×512 simulation. (Grids have been subsampled
for display.)

5.1 Advection

We split the velocity field into its three components u =
[ux,uy,uz]T , and can write the velocity advection of each compo-
nent as u̇? = −(u ·∇)u? = −∇ · (uu?), where ? stands for x, y, or
z. The right hand side of this equation is called the conservation
form of the advection equation, and equality follows from the zero
divergence of the velocity field. The conservation form can be dis-
cretized about each grid face (i, j,k) to form the partial differential
equation:

u̇?
i, j,k = 1

∆h
(
(uxu?)i−1/2, j,k− (uxu?)i+1/2, j,k+
(uyu?)i, j−1/2,k− (uyu?)i, j+1/2,k+
(uzu?)i, j,k−1/2− (uzu?)i, j,k+1/2

)
,

(4)

where ∆h is the grid spacing. By fixing the velocity fluxes and
recombining the three grids we get a linear differential equation:

u̇ = Auu (5)

which indicates how the velocity vector u would change if advected
through a fixed velocity field defined by the advection matrix Au.

We now project this equation onto the reduced subspace B. Let
r = [r1, . . . ,rm]T represent the reduced state so that u = Br. Then
the advection matrix in Equation (5) can be expressed as a linear
combination of advection matrices for each velocity basis state:

u̇ =
(
r1Aû1 + · · ·+ rmAûm

)
u, (6)

effectively contracting the advection tensor. This equation can, in
turn, be orthogonally projected onto the reduced dimensional basis
as:

ṙ =
(

r1BT Aû1 B+ · · ·+ rmBT Aûm B
)

r = Âr. (7)

Hence, at each timestep we take a linear combination of the m pre-
computed reduced advection matrices BT Aûi B to form the reduced
advection matrix Â as in Equation (7). The reduced state then can
be advanced to the next timestep by exactly solving the linear ODE
using the eigen-decomposition method:

r(t +∆t) = Ee∆tΛE−1r, (8)

where EΛE−1 = Â is the eigen-decomposition of Â. All of these
operations take time O(m3) and are independent of n, the number
of simulation voxels. For simulations with a very large basis, this

828

computation might be replaced with other symplectic or implicit
integration methods in the reduced space. However, in all of our
examples, the cost of this integration has been negligible.

5.1.1 Kinetic Energy Preservation

This advection algorithm naturally preserves kinetic energy, a
highly useful property for which we now give a proof sketch. It
can be shown that our discretization (4) always yields a zero def-
inite advection matrix (∀x xT Aux = 0) given a divergence-free
field ∇ · u = 0. The total kinetic energy is defined as E = 1

2 uT u
(where u is the vector over all grid velocities). By the chain rule,
Ė = uT u̇ = rT BT Bṙ = rT ṙ. Substituting Equation (7) for ṙ gives
Ė = ∑i rT BT Aûi Br. Because the advection matrices are all zero-
definite, the terms rT BT Aûi Br all vanish, implying Ė = 0. Hence,
total energy remains unchanged if we exactly solve the linear ad-
vection ODE, as in Equation (8).

We emphasize that energy is preserved only within the reduced
subspace; velocity modes not present in the subspace have zero en-
ergy, and represent our algorithm’s primary source of error. More-
over in practice, we intentionally dissipate energy through diffu-
sion (Section 5.2) because completely inviscid flows are not seen
in nature, and will gradually depart from the observed basis. Also,
diffusion adds stability during user interaction. Nonetheless, en-
ergy preservation allows us to control the energy dissipation profile
precisely (Figure 3).

Figure 3: Energy Dissipation in a 128×128 simulation. Our simulator exactly pre-
serves kinetic energy in the absence of diffusion, ν = 0.0. A diffusion coefficient of
ν = 0.2 (blue) most accurately matches the numerical viscosity inherent in our full
dimensional simulator (green).

5.2 Diffusion

The diffusion step accounts for viscosity. Simulation proceeds by
discretizing the diffusion operator ν∇2 into a diffusion matrix νD.
In an unreduced simulation, the next step would be to solve the
linear ODE either explicitly or implicitly, each of which have prob-
lems. Explicit methods become unstable for high kinematic vis-
cosities ν , while implicit solvers are stable, but require solving a
linear system. Our reduced technique resolves both of these prob-
lems: we can simulate more quickly than an explicit solver and
more accurately than an implicit method. The algorithm is as fol-
lows: the diffusion matrix D can be orthogonally projected to pro-
duce the reduced diffusion matrix D̂ = BT DB. As with advection,
we exactly solve the linear ordinary differential equation defined
by the reduced diffusion matrix r(t + ∆t) = Ee∆tΛE−1r (where
EΛE−1 = D̂ now denotes the eigen-decomposition of the precom-
puted diffusion matrix). Unlike advection, this transition matrix is
constant throughout the simulation and therefore can be precom-
puted. This enables stable, accurate diffusion with a single m×m
matrix multiply. We note that as with advection, accuracy is only
within the reduced subspace; the system cannot diffuse into config-
urations outside the subspace.

5.3 Projection

Projection involves adding a pressure force ∇p to enforce both the
flow’s incompressibility and correct fluid-object boundary condi-
tions. As noted in Section 4, our model reduction approach pre-
serves these constraints automatically for fixed boundaries. Thus
p = 0, and we can completely skip the projection step. This yields
substantial speed gains because projection is in general the most
costly step of grid-based simulators; even with symmetric opera-
tors on hierarchical grids, this step can take 25% of each timestep
[Losasso et al. 2004]. Section 7 shows how our technique may be
extended to handle moving objects through a local approximation
of the pressure forces around each object.

5.4 External Forces

External forces can be added by projecting the forces f onto the re-
duced subspace f̂ = BT f, and adding those onto the reduced velocity
vector: r+ = f̂. Note that because the basis is global, even sparse
forces f project to non-sparse reduced force vectors f̂.

6 Immersed Media

For the flow to be visible, pure velocity simulations must be cou-
pled with immersed media, such as particles (including dust, leaves,
and texture sprites) or volumetric smoke densities. Particles are
particularly well suited to real-time reduced fluid simulation: par-
ticle rendering is fast, and simulation only requires reconstruct-
ing velocities in the neighborhood of each particle. Thus, we see
particular speedups when marrying model reduction with particle
simulation. To simulate volumetric densities, we perform semi-
Lagrangian advection [Stam 1999] through the full velocity field
u at each timestep. While the O(mn) velocity reconstruction step
introduces a performance dependency on the number of voxels n,
this approach is justified because the cost of rendering is also pro-
portional to the number of voxels, and is generally much higher
than that of simulation. For both particles and densities our fluid
simulator is output-sensitive: the costs of simulation and rendering
are proportional to one another.

7 Boundary Conditions

The above algorithm simulates the complete incompressible
Navier-Stokes equations on a reduced dimensional basis. This algo-
rithm is self-contained, and generally much faster than traditional
techniques. The only means of user interaction, however, is the ex-
ternal force term (Section 5.4). While forces can be useful, a more
natural form of user interaction would be to move objects through
the flow. We now extend the above simulator to do just that.

Boundaries are handled via the pressure term (3C), which adds
the minimal force so that the fluid velocity field u equals the speed
of the object v along all surface normals. That is, at surface point
x with normal n, we have u(x) ·n = v(x) ·n (tangential fluid move-
ment is allowed). This free-slip condition cannot be satisfied by the
low-dimensional physics alone because the model does not have
sufficient degrees of freedom. Therefore, our model must somehow
be extended. Ideally, we would have high-frequency fidelity along
the surface: for example, smoke would appear to curl around a sur-
face rather than penetrate it. It should also be possible to handle
multiple objects moving independently. Most importantly, we seek
a low-dimensional (possibly approximate) model which admits all
computations in the reduced-dimensional space.

829

(1) (3) (5) (7) (9) (ẋ) (ẏ) (θ̇)

Figure 4: (1)-(9): The first 9 basis grids for a c-shape object (skipping every other). These form a basis for the expected velocities at the surface, and are divergence-free everywhere
else. (ẋ), (ẏ), and (θ̇): The additional translational and rotational basis (Section 7.2.3).

7.1 The Boundary Basis

Our solution is to add a set of forces in the local neighborhood of
each object which enforces the boundary conditions at the surface.
We chose a linear representation, so that these forces consist of a
boundary basis B̃ = [ũ1, . . . , ũp] combined with a reduced state vec-
tor r̃ = [r̃1, . . . , r̃p]T . The power of the boundary bases is that they
track the location of their objects. For an object with rotation matrix
Φ and position vector t, let the resampling operator RΦ,t convert a
velocity field from the object’s frame of reference into the global
coordinate system:

[
RΦ,tu

]
(x) ≡ Φu(Φ−1x− t), as illustrated in

Figure 5. We now say that the full velocity field u′ combines both
simulation basis and all boundary bases (properly oriented in the
global coordinate system):

u′ = Br+∑
i

RiB̃ir̃i, (9)

where Ri = RΦi,ti is shorthand for object i’s resampling operator.
By combining object tracking with a linear representation, bound-
ary bases allow the quick and compact enforcement of the free-slip
conditions.

Figure 5: The resampling operator RΦ,t changes a velocity field’s coordinate system,
while the surface speed operator Si measures surface normal velocity.

Since the free-slip boundary conditions constrain surface speed,
it will be useful to define an operator which measures these
velocities. To do so, we discretize object i’s surface into a
set of points {x1, . . . ,xq} with corresponding surface normals
{n1, . . . ,nq}. We now define the surface speed operator Siu ≡[
u(x1) ·n1, . . . ,u(xq) ·nq

]T . Intuitively, the indices into this vec-
tor correspond to points along the surface, and the entries are the
normal speeds at these points. Graphically, these are the lengths
of the spiky surface vectors in Figure 5(b). Surface speeds can be
computed for other object orientations (Φ, t) by first resampling the
velocity field SiR−1

Φ,tu as in Figure 5(a). (The inverse R−1 is required
to convert into the object’s frame of reference.)

We now turn to how the boundary basis is constructed. For sim-
plicity, we provisionally assume that each object is at rest. Hence,
the boundary basis should cancel all velocity normal to the object
surface: SiR−1

i u = 0, meaning that the basis should match the ve-
locity basis as closely as possible (with opposite sign). Therefore,
our goal is to construct a boundary basis as representative as pos-
sible of the expected surface velocities. To do so, we perform a
double loop over the velocity fields in the simulation basis u ∈ B
and a representative set of orientations (Φ, t) ∈ P . For every pair
of velocity field and orientation, we measure the surface speed as-
suming object i were thus situated, and we collect these vectors

into a large set Si = {SiR−1
Φ,tu |(Φ, t) ∈ P,u ∈ B}. Running PCA

gives us the most representative p-dimensional basis for Si. In
fact, we set the boundary basis B̃i to be the set of minimum energy
divergence-free velocity fields whose surface speeds are those PCA
eigenvectors: SiB̃i = PCAp[Si]. Note that because PCA always re-
turns an orthonormal set of vectors, we have the useful property
that:

(
SiB̃i

)T SiB̃i = I. Figure 4(1)-(9) shows the resulting bound-
ary basis for a c-shaped object.

7.2 Coupling

Taking the boundary bases into account requires a modest exten-
sion to our algorithm. At each timestep, after the reduced state r
has been simulated but before immersed media have been advected,
we compute the reduced state vector r̃ for each object. Immersed
media can then be advected through the complete velocity field u′
(9). At the end of each timestep, we compute the Galerkin pro-
jection of these boundary forces back into the reduced simulation
basis. Figure 6 gives more precise pseudocode. For now, we take
a closer look at how information is propagated between the simula-
tion and boundary bases, which we call the feedforward Fi : r 7→ r̃i
and feedback Gi : r̃i 7→ r operators, respectively.

1. Advect the velocities. O(m3) (5.1)
2. Diffuse the velocities. O(m2) (5.2)
3. Add forces. O(m) (5.4)
4. for each object i:

// Feedforward.
r̃i← Fir O(pm) (7.2.1)

5. Advect immersed media in u′. (6)
6. for each object i:

// Feedback.
r += Gir̃i O(pm) (7.2.2)

Figure 6: Per-timestep pseudocode. We first simulate the global field (1)-(3), then
account for boundaries (4)-(6).

7.2.1 Forward Coupling

For simplicity, we shall continue to assume that object i is at rest, re-
laxing this assumption only in Section 7.2.3. As mentioned above,
this implies no velocity along surface normals: SiR−1

i u = 0. There-
fore, if we premultiply Equation (9) by SiR−1

i and ignore all objects
but i we get:

0 = SiR−1
i Br+SiB̃ir̃i.

Ignoring these objects is justified because coupling effects are
negligible unless two objects are very close. Using the or-
thonormality of SiB̃i, the above equation can be solved as r̃i =
−

(
SiB̃i

)T SiR−1
i Br. Therefore we define the feedforward opera-

tion:

Fi ≡−
(
SiB̃i

)T SiR−1
i B. (10)

830

Intuitively, we have taken the simulation velocity field (restricted
to the object surface) SiR−1

i B and projected this into the space
of boundary basis fields SiB̃i to get the reduced boundary vector
r̃ which best cancels all velocities along the surface. Computa-
tionally, this operation requires first iterating over all object faces
and accumulating velocities, and then projecting the surface speeds
onto the boundary basis. Performing these two steps takes time
O(qp + qm), where q is the number of faces, and m and p are the
sizes of the simulation and boundary bases, respectively. In Section
7.3, we show how this complexity may be greatly reduced through
precomputation.

7.2.2 Backward Coupling

Once the reduced boundary vectors have been computed for each
object, and any immersed media have been advected through the
flow, we must project the effect of the boundary forces back onto the
reduced simulation basis. Equation (9) can be Galerkin-projected
(premultiplied by BT) to read:

r′ = r+∑
i

BT RiB̃ir̃i.

Therefore, the feedback operation

Gi ≡ BT RiB̃i (11)

requires iterating over the voxels in the boundary basis, accu-
mulating boundary forces, and then projecting these forces onto
the reduced simulation basis. This two step process takes time
O(bp + bm), where b is the number of voxels in the boundary ba-
sis. Like forward coupling, the feedback operator may be reduced,
as described in Section 7.3.

7.2.3 Extension to Moving Objects

Until now we have assumed that the object is at rest. A simple ex-
tension handles moving objects. First, the boundary basis B̃ must
be extended to include local forces due to translation and rotation.
In 2D there are two translational forces, ẋ and ẏ, and one rotational
force θ̇ , as shown in Figure 4. Therefore the basis is expanded to
become B̃′ =

[
B̃, ẋ, ẏ, θ̇

]
. In 3D there are three translational forces

and two rotational forces. At runtime, the feedforward operator is
computed as before (Section 7.2.1), except that after surface veloc-
ities have been canceled, the extra forces are added equal to the
translation and rotation of the object. The feedback operation (Sec-
tion 7.2.2) remains identical, except that the full boundary basis,
including the extra forces, must be projected back into the reduced
basis.

7.3 Precomputed Coupling

In Sections 7.2.1 and 7.2.2 we defined the feedforward and feed-
back operators in the full space: feedforward requires iterating over
all object faces, while feedback requires iterating over all voxels
in the boundary basis. Notice however that these operations (10)
and (11) are linear in their operands (although nonlinear in the ob-
ject location). Therefore, we can precompute the matrices F and
G over a discretized set of boundary orientations (Φ, t), and simu-
late feedforward and feedback entirely in the reduced space. Both
operations become virtually instantaneous matrix multiplies taking
time O(pm) per object, where p and m are the dimensions of the
boundary and simulation bases respectively.

Precomputing the feedback and feedforward operators dramati-
cally improves simulation time. However, it can be very costly in
terms of memory, particularly if matrices are being stored along
both translational and rotational axes. High-order tensor compres-
sion offers the most promising solution to this problem. We used

PCA to compress the feedback matrices, storing only the coeffi-
cients at each grid cell. The technique of Wang et al. [2005], and re-
lated ideas might yield even greater memory savings. There are also
a number of other strategies one can employ to reduce the memory
burden. For example, if an object were restricted to a certain part
of the domain or certain orientations, then only the corresponding
matrices need be stored. A balance must also be sought between
finely discretized boundary orientations and memory. Doubling the
spacing between precomputed matrix samples reduces memory re-
quirements by 75% in 2D, but also decreases simulation accuracy,
a tradeoff which is explored in Figure 11. In some cases, boundary
operations may not be the bottleneck, and precomputation is not
necessary. However especially in particle simulations, feedforward
and feedback precomputation allows us to work completely in the
reduced space, yielding large time savings.

7.4 The Reduced Model’s Relation to the Physics

The pressure term of the Navier-Stokes equations (3C) ensures both
that the flow is divergence-free and that surface boundary condi-
tions are met. In our model, the former constraint is implicitly in-
herited from the basis grids. Time-varying boundary conditions,
however, must be enforced explicitly using boundary bases. In fact,
the boundary basis model can be viewed as an approximation of the
pressure term: both add forces to the flow to enforce boundary con-
ditions. However, the boundary basis technique relies on a number
of physical approximations that we now make explicit.

Most importantly, our algorithm does not exactly satisfy the free-
slip conditions unless the number of boundary basis states equals
the number of object faces. However, PCA allows us to solve for
the optimal truncated set of boundary basis grids. In practice, we
have found that visually accurate simulations can be achieved with
64 basis states, the number we used for all examples. Figure 11
quantifies the success of this approach. Second, we assume that the
instantaneous effect of an object on the flow is limited to the extent
of that object’s basis. While the pressure equation is theoretically
global, in reality the effects outside the boundary basis are vanish-
ing small. Note that non-local time effects are handled by our feed-
back term. Third, we compute every object independently, ignoring
the visually negligible coupling between constraints. Finally, the
pressure equation requires that the field be minimally disturbed to
accommodate boundaries. Because the boundary basis may not be
orthogonal to the underlying simulation basis, we cannot make such
an assurance. Compression of the feedback matrices introduces yet
another layer of approximation as described in Section 7.3.

8 Results

We have produced a number of examples with our system (Table
1). Precomputation began by compressing a set of high-resolution
fluid snapshots into the simulation basis, then compressing a rep-
resentative set of surface speed vectors into the boundary basis for
each object. For dimension reduction, we used the output-sensitive
PCA algorithm described in a technical report by James and Fata-
halian [2003]. Precomputation runtimes are summarized in Table 2.
All precomputations fit in 3.5GB of main memory, except for our 2
million voxel Leaves example for which we used out-of-core PCA.
After precomputation, we performed real-time simulation and ren-
dering on a 3.6GHz Intel Xeon computer with an NVIDIA Quadro
FX 3450 graphics card. All fluid and particle simulation was per-
formed on the CPU, while density simulation and rendering were
GPU-accelerated.

We now explain in more detail how the results were created. The
2D Boundaries example was trained on 144 simulations of a mov-
ing c-shaped object immersed in the flow (Figure 4). We then in-
troduced two additional objects, maintaining visually plausibility

831

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

400

Er
ro

r

Timesteps

8 Bases
32 Bases

128 Bases
64x64
96x96

112x112

Figure 7: Simulation Error for our 2D Boundaries example. Error is measured against
a full 128×128 semi-Lagrangian simulation.

although the simulator had not trained on these objects. The Forces
example (Figure 9) was trained with 15 examples of impulse forces
which the user can interactively mix at runtime. In both of our
2D examples, the density coloration is purely aesthetic. For the
3D Boundaries example (Figure 8), we trained the system with a
flat boundary object at three locations in a turbulent rising velocity
field. At runtime, the user can move both this, and a similar object
containing an aperture. We cause the smoke to rise by immersing
it in a uniform updraft that unfortunately produces a rather lami-
nar flow. A more principled approach would use a model-reduced
temperature field in conjunction with the velocities: much of the
turbulence of rising smoke is caused by forces due to temperature
gradients. Finally, our Leaves example (Figure 1) involves 4000
leaf particles immersed in a large fluid grid. The leaves were sub-
ject to both the velocity field and a small gravitational force. We
trained these examples by adding impulse forces and by simulating
a car moving rapidly through the grid following one of four pre-
computed paths. In real-time, the user is able to automatically add
wind forces, or move the cars with the mouse. We note that the car
example was completely implemented on the CPU. We encourage
the reader to view the animated results in the companion video.

Figure 8: Real-time fluid-object interaction in a 64×64×64 cube.

Table 1 on the next page presents timing comparisons against
two semi-Lagrangian fluid solvers, one on the CPU and the other
on the GPU. For reference, our CPU comparison solver is faster
than the the Maya 6.0 fluid solver on comparable hardware. Our

GPU comparison solver performs 3D fluid simulation using 2D tex-
ture hardware, thus incurring a performance cost relative to pure
2D GPU solvers. This implementation is necessary, however, to
compare against our 3D Boundaries example. Texture size limits
prevented GPU comparison against Leaves, although this reduced
example did not use the GPU anyway. We note some subtleties
in the data. In our 2D and 3D Boundaries examples we precom-
puted only the feedback matrices, calculating feedforward forces
on the fly. Because volumetric density rendering is so slow (∼ 75%
of each timestep in 3D), this allowed us to save memory at a neg-
ligible loss of frame rate, but increased our boundary costs. For
the Leaves example, we precomputed all coupling forces, yield-
ing much lower boundary costs. Note that Leaves is our fastest re-
sult despite the large number of voxels, and despite the completely
CPU-based implementation. While much of the savings is due to
using particles over densities, these timing results also underscore
the voxel-independent time complexity of our fluid simulator.

Name Snapshots Velocities Boundaries
2D Boundaries 8208 8 2
Forces 1024 11 0
3D Boundaries 400 10 113
Leaves 364 17 50

Table 2: Precomputation time. The “Velocities” column shows the time to compress
the simulation basis and project the physics, while “Boundaries” shows the time to
compress the boundary basis and compute reduced coupling forces for each object.
All times are in hours. Note that these are total times which we reduced in practice by
parallelizing over a 16 processor cluster.

Figure 9: User-added forces on a 512×512 domain running at 41 frames/second.

Our results show that model reduction can preserve qualitatively
important features such as turbulence (Figure 9). However, there
are also obvious inaccuracies relative to full simulation. We now
explore the sources of error. First, the choice and number of ba-
sis functions plays an important role. Figure 7 shows how error
varies with the basis size. For comparison, we have also included
three lower resolution full simulations. These results show that spa-
tial downsampling rapidly yields error at least as high as model
reduction. For example, downsampling from 128×128 to 96×96
produces roughly the same error as projecting onto only 32 basis
states. Because these trials were run without external input, the re-
duced simulations adhered closely to the full simulation. Another
important source of error, however, is divergence from observed
data. For example, the user may present runtime inputs on which
the system has not been trained. While this is difficult to measure,
Figure 10 shows one such example: we trained a 128×128 simula-

832

Info Full Runtime Reduced Runtime Speedup (Slowdown)
Name Shape Bases Type GPU CPU Velocities Boundaries Media Total vs. GPU vs. CPU
2D Boundaries 128×128 64 CPU/GPU 6.9 107 8.8 5.7 2.4 16.9 (2) 6
Forces 512×512 64 CPU/GPU 139 3595 8.8 0.0 14.5 23.3 6 154
3D Boundaries 64×64×64 64 CPU/GPU 521 3381 8.8 8.9 15.6 33.3 16 102
Leaves 256×64×128 32 CPU – 26893 1.2 0.3 0.2 1.7 – 15819

Table 1: Timing summary. The “Type” column indicates the reduced simulation’s processor architecture. The “Media” column indicates runtime for immersed media. No runtime
is given for the Leaves GPU example, because the grids exceeded the texture size. Times are in ms.

tion with initial wind forces pointing at 0◦ and 90◦. We then tested
the reduced simulator with wind forces at other angles. As the wind
forces move towards 45◦ the simulation remains visually plausible
but numerical accuracy diminishes, as expected. Both Figures 7
and 10 measure error using the relative l2 norm ||u−u∗||2/||u∗||2
against the “ground truth” u∗, a full 128×128 simulation. Approxi-
mations due to the boundary basis represent another source of error.
In this case we choose a different metric: the percentage of surface
energy removed per timestep by our technique. Perfect boundary
conditions (100% energy removal) would only be possible with full
set of boundary bases and exact feedforward computation. In prac-
tice, we use a truncated set of bases, and precomputed feedforward
matrices drawn from a finite set P of boundary positions. Figure 11
shows the effect of using progressively smaller sets of translational
boundary positions (as measured in the distance between samples).
When feedforward matrix samples are one voxel apart, we achieved
∼ 95% surface energy removal per timestep for the c-shaped object
in our 2D Boundaries example. Finally, there are global statisti-
cal measures of the performance, such as energy preservation. As
noted in Section 5.1, our system actually can preserve energy when
the diffusion coefficient ν = 0. Otherwise, we can precisely control
the energy falloff (Figure 3).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

9080706050403020100

Er
ro

r

Angle

Figure 10: Simulation Error for Unseen Inputs. Observed force directions (0◦ and
90◦) have lower error than unobserved force directions (0◦ < θ < 90◦).

Figure 11: Using fewer precomputed feedforward matrices (spacing the samples fur-
ther apart) yields lower boundary fidelity.

9 Discussion and Future Work

This paper presents a model reduction approach to real-time fluid
simulation for interactive applications. We show that moving ob-
jects can be integrated into the flow by endowing them with their

own reduced models. Moreover, the coupling forces between the
individual models can be computed in the reduced space as well.
Our treatment of moving objects overcomes one of the principle
hurdles to adapting model reduction to interactive fluid simulation.
In addition, our treatment of the reduced advection term allows us
to precisely control the amount of energy dissipation in the simula-
tion.

Within the gamut of fluid solvers, model reduction has a unique
time complexity: the simulation runtime depends only on the ba-
sis size. Thus, complex phenomena can be observed on large grids
and the number of variables is essentially proportional to the un-
derlying degrees of freedom, such as the number of possible input
forces. Grid resolution could be doubled, for example, without loss
of speed. In practice, simulation and rendering are both dominated
by the amount of immersed media. This makes model reduction
particularly well suited to simulating immersed particles, where the
velocity field need only be sparsely queried.

This speed, however, comes at the cost of accuracy, generality,
and memory consumption. The system is unable to transfer into
states not in the subspace, representing an inherent source of error
particularly when the user presents inputs not in the training set.
Moreover, because the basis states have global support, errors can
have correspondingly global effect on the field. This is not to say
that we are limited only to reproducing simulations in the training
set. Our results demonstrate that the system is robust to general
user interaction, and to new objects. However, we do not expect
to see completely new flows. A related drawback is that our sys-
tem must be trained before simulating. Changing the fixed bound-
ary conditions, or creating new objects require lengthy precomputa-
tions. Once training is complete however, the system may be reused
many times to produce simulation. As mentioned in the Section 7,
the memory requirements of our algorithm are high. In fact, the
grid size of our GPU-based 3D simulations was constrained by our
GPU’s 256 MB memory ceiling, and the cost of streaming grids to
the GPU at each timestep prevents storing this data in CPU memory.
Looking forward, however, we believe that the relative importance
of model reduction will increase as memory costs decrease.

Another limitation of our technique is that the density simula-
tion is computed in the full space. In principle, the density simu-
lation could be reduced and the advection equation projected onto
the joint reduced density/velocity space. However, issues related to
density non-negativity and boundary conditions would have to be
addressed, and it is questionable if a small number of modes could
capture the required density configurations as well as they do the
velocities. Moreover, as mentioned in Section 8, the runtime bot-
tleneck is actually the volumetric density rendering, not the simula-
tion. If precomputed radiance transfer (essentially, model-reduced
rendering) could be applied to the density field, then density reduc-
tion would certainly become an attractive possibility. In the mean-
time, immersed particles have the most promising cost relationship
with model reduction.

We believe there are many other exciting branches to be
explored. New model reduction techniques such as nonlinear
Galerkin projection and balanced truncation might offer richer
simulations for a similar number of modes. We are particularly
interested in exploring the coupling between separate reduced
models similar to our treatment of boundaries. Such coupling

833

is crucial for generalizing model reduction to a wider set of
phenomena, including compressible fluids, free-surface liquids,
even particle systems such as hair and cloth. In general, we
believe that model reduction offers an promising approach towards
bringing the cinematic special effects which are a hallmark of
computer graphics to the interactive space.

Acknowledgments. The authors would like to thank Jia-chi Wu for
creating the video, Christopher Cameron for his insightful help on
the exposition, and the anonymous reviewers for their comments.
This work was supported by the UW Animation Research Labs,
NSF grants EIA-0121326, CCR-0092970, IIS-0113007, an Alfred
P. Sloan Fellowship, an NSF Graduate Research Fellowship, Elec-
tronic Arts, Sony, and Microsoft Research.

References

AUSSEUR, J., PINIER, J., GLAUSER, M., AND HIGUCHI, H.
2004. Predicting the Dynamics of the Flow over a NACA 4412
using POD. APS Meeting Abstracts (Nov.), D8.

BARBIČ, J., AND JAMES, D. 2005. Real-time subspace integration
for St. Venant-Kirchhoff deformable models. ACM Transactions
on Graphics 24, 3 (Aug.), 982–990.

BOLZ, J., FARMER, I., GRINSPUN, E., AND SCHRÖDER, P. 2003.
Sparse matrix solvers on the gpu: Conjugate gradients and multi-
grid. ACM Transactions on Graphics 22, 3 (July), 917–924.

COUPLET, M., BASDEVANT, C., AND SAGAUT, P. 2005. Cali-
brated reduced-order POD-Galerkin system for fluid flow mod-
elling. J. Comput. Phys. 207, 1, 192–220.

ELCOTT, S., TONG, Y., KANSO, E., SCHRÖDER, P., AND DES-
BRUN, M. 2005. Stable, circulation-preserving, simplicial flu-
ids. In Discrete Differential Geometry, Chapter 9 of Course
Notes. ACM SIGGRAPH.

FELDMAN, B. E., O’BRIEN, J. F., AND KLINGNER, B. M. 2005.
Animating gases with hybrid meshes. ACM Transactions on
Graphics 24, 3 (Aug.), 904–909.

FOGLEMAN, M., LUMLEY, J., REMPFER, D., AND HAWORTH,
D. 2004. Application of the proper orthogonal decomposition to
datasets of internal combustion engine flows. Journal of Turbu-
lence 5, 23 (June).

FOSTER, N., AND METAXAS, D. 1996. Realistic animation of
liquids. Graphical Models and Image Processing 58, 5, 471–
483.

GOODNIGHT, N., WOOLLEY, C., LUEBKE, D., AND
HUMPHREYS, G. A. 2003. Multigrid solver for bound-
ary value problems using programmable graphics hardware. In
Proceeding of Graphics Hardware, 102.

HARRIS, M. J., COOMBE, G., SCHEUERMANN, T., AND LAS-
TRA, A. 2002. Physically-based visual simulation on graphics
hardware. In Graphics Hardware 2002, 109–118.

HOLMES, P., LUMLEY, J. L., AND BERKOOZ, G. 1996. Turbu-
lence, Coherent Structures, Dynamical Systems and Symmetry.
Cambridge University Press, Cambridge, MA.

JAMES, D. L., AND FATAHALIAN, K. 2003. Precomputing in-
teractive dynamic deformable scenes. ACM Transactions on
Graphics 22, 3 (July), 879–887.

KRÜGER, J., AND WESTERMANN, R. 2003. Linear algebra op-
erators for GPU implementation of numerical algorithms. ACM
Transactions on Graphics 22, 3 (July), 908–916.

LI, W., WEI, X., AND KAUFMAN, A. 2003. Implementing lat-
tice Boltzmann computation on graphics hardware. The Visual
Computer 19, 7-8, 444–456.

LOSASSO, F., GIBOU, F., AND FEDKIW, R. 2004. Simulating wa-
ter and smoke with an octree data structure. ACM Transactions
on Graphics 23, 3 (Aug.), 457–462.

LUMLEY, J. L. 1970. Stochastic Tools in Turbulence, vol. 12 of Ap-
plied Mathematics and Mechanics. Academic Press, New York.

MARION, M., AND TEMAM, R. 1989. Nonlinear Galerkin meth-
ods. SIAM J. Numer. Anal. 26, 5, 1139–1157.

MAUREL, S., BOREE, J., AND LUMLEY, J. 2001. Extended proper
orthogonal decomposition: Application to jet/vortex interaction.
Flow, Turbulence and Combustion 67, 2 (June), 125–36.

PARK, S. I., AND KIM, M. J. 2005. Vortex fluid for gaseous phe-
nomena. In 2005 ACM SIGGRAPH / Eurographics Symposium
on Computer Animation, 261–270.

ROWLEY, C. W., AND MARSDEN, J. E. 2000. Reconstruction
equations and the Karhunen-Loéve expansion for systems with
symmetry. Phys. D 142, 1-2, 1–19.

ROWLEY, C. W., KEVREKIDIS, I. G., MARSDEN, J. E., AND
LUST, K. 2003. Reduction and reconstruction for self-similar
dynamical systems. Nonlinearity 16 (July), 1257–1275.

ROWLEY, C., WILLIAMS, D., COLONIUS, T., MURRAY, R., AND
MACMARTIN, D. 2006. Linear models for control of cavity
flow oscillations. J. Fluid Mech. (Jan.).

SCHMIT, R., AND GLASUER, M. 2002. Low dimensional tools
for flow-structure interaction problems: Application to micro air
vehicles. APS Meeting Abstracts (Nov.), D1+.

SELLE, A., RASMUSSEN, N., AND FEDKIW, R. 2005. A vortex
particle method for smoke, water and explosions. ACM Trans-
actions on Graphics 24, 3 (Aug.), 910–914.

SIRISUP, S., AND KARNIADAKIS, G. E. 2004. A spectral viscosity
method for correcting the long-term behavior of POD models. J.
Comput. Phys. 194, 1, 92–116.

SIROVICH, L. 1987. Turbulence and the dynamics of coherent
structures. I - Coherent structures. II - Symmetries and trans-
formations. III - Dynamics and scaling. Quarterly of Applied
Mathematics 45 (Oct.), 561–571.

STAM, J. 1999. Stable Fluids. In Computer Graphics (SIGGRAPH
99), ACM, 121–128.

STAM, J. 2001. A simple fluid solver based on the fft. Journal of
graphics tools 6, 2, 43–52.

WANG, H., WU, Q., SHI, L., YU, Y., AND AHUJA, N. 2005.
Out-of-core tensor approximation of multi-dimensional matrices
of visual data. ACM Transactions on Graphics 24, 3 (Aug.),
527–535.

WU, E., LIU, Y., AND LIU, X. 2005. An improved study of real-
time fluid simulation on GPU. Computer Animation and Virtual
Worlds 15, 3-4, 139–146.

834

