Multicore Bundle Adjustment

Changchang Wu¹, Sameer Agarwal², Brian Curless ${ }^{1}$, Steven M. Seitz ${ }^{1,2}$ 1 University of Washington at Seattle, ${ }^{2}$ Google Inc.

14 K cameras, 4.5 M points and 30 M measurements in 2 minutes! Code available at http://grail.cs.washington.edu/projects/mcba/

Our Multicore Solution

> Problem restructuring to make bundle adjustment easily parallelizable.
> 10x-30x Speedup on nVidia Tesla C1060 GPU
> 5x-10x Speedup on Dual Intel Xenon E5520 (16 cores)
$>$ Up to 80% reduction in memory usage.

Bundle Adjustment

Bundle adjustment is the joint non-linear refinement of camera and point parameters. Levenberg-Marquardt (LM) is the most popular method for solving bundle adjustment. Let J be the Jacobian, each step of LM solves a regularized linear least squares problem
$\delta^{*}=\arg \min _{\delta}\|J(x) \delta+f(x)\|^{2}+\lambda\|D(x) \delta\|^{2}$
which is equivalent to solving the normal equations:

$$
\left(J^{T} J+\lambda D^{T} D\right) \delta=-J^{T} f .
$$

where $H_{\lambda}=J^{T} J+\lambda D^{T} D$ is called the augmented Hessian Matrix.
The parameters consist of the camera part and the point part ($\delta=\left[\delta_{c} ; \delta_{p}\right]$, $J=\left[J_{c}, J_{p}\right]$, etc.) and most methods first solve the reduced camera system

$$
\left(U_{\lambda}-W V_{\lambda}^{-1} W^{T}\right) \delta_{c}=-J_{c}^{T} f+W V_{\lambda}^{-1} J_{p}^{T} f
$$

where $S=U_{\lambda}-W V_{\lambda}^{-1} W^{T}$ is called the Schur complement,
$U_{\lambda}=J_{c}^{T} J_{c}+\lambda D_{c}^{T} D_{c}, V_{\lambda}=J_{p}^{T} J_{p}+\lambda D_{p}^{T} D_{p}$ and $W=J_{c}^{T} J_{p}$

- Exploit associativity of multiplication to eliminate matrix products

Using the augmented Hessian matrix without forming it

$$
H_{\lambda} q=J^{T}(J q)+\lambda\left(D^{T} D\right) q
$$

Using the Schur complement without forming it or forming the Hessian $S q_{c}=J_{c}^{T}\left(J_{c} q_{c}-J_{p}\left(V_{\lambda}^{-1}\left(J_{p}^{T}\left(J_{c} q_{c}\right)\right)\right)\right)+\lambda D_{c}^{T} D_{c} q_{c}$

- Map problem structure to use both multi-threading and SIMD

Map computation loops to threads on compute cores

- A few threads on CPU: manv threads on GPU
- Align parameter size to 4 and employ SIMD arithmetic CPU SSE operates on 4 floats; CUDA Warp operates on 32 floats

Venice Final : 14 K Cameras, 4.5 M points, and 30 M Measurements. (LM is profiled with a fixed number of 10 CG iterations).

- Use single-precision arithmetic with proper normalization Normalize parameters to precondition the distribution of Jacobians. - Maintain accuracy while achieving higher throughput.
- Replace large matrices with on-the-fly computation
- Substantial memory savings.
- Increased GPU throughput due to reduced memory contention.

	CPU	GPU
$J x$	0.56 X	1.44 X
$J^{T} y$	0.48 X	1.09 X
LM	0.46 X	1.27 X

Dubrovnik Final: 4.6 K cameras, 1.3 M points, and 8 M measurements Memory usage can be reduced from 1.9 G to 0.55 G

Venice Final (13775 cameras
5 M points, 50 LM steps in 2 minutes)

Dubrovnik Skeletal (356 cameras, 226730pts, 50 LM steps in 5 seconds)

Ladybug (1723 cameras, 156502 pts, 50 LM steps in 2 seconds)

