
► Map problem structure to use both multi-threading and SIMD

• Map computation loops to threads on compute cores 

- A few threads on CPU; many threads on GPU

• Align parameter size to 4 and employ SIMD arithmetic

- CPU SSE operates on 4 floats; CUDA Warp operates on 32 floats

Venice Final : 14K Cameras, 4.5M points, and 30M Measurements. 
(LM is profiled with a fixed number of 10 CG iterations).

► Use single-precision arithmetic with proper normalization
• Normalize parameters to precondition the distribution of Jacobians.

• Maintain accuracy while achieving higher throughput.

Experiments (comparing with Agarwal et al. Bundle Adjustment in the Large,ECCV2010)

Venice Final (13775 cameras, 4.5M points, 50 LM steps in  2 minutes)

Dubrovnik Skeletal (356 cameras, 226730pts, 50 LM steps in 5 seconds)  

Ladybug (1723 cameras, 156502pts, 50 LM steps in 2 seconds)

• Comparable convergence behaviors. 

Bundle Adjustment

Bundle adjustment is the joint non-linear refinement of camera and point 

parameters. Levenberg-Marquardt (LM) is the most popular method for 

solving bundle adjustment. Let J be the Jacobian, each step of LM solves a 

regularized linear  least squares problem:

which is equivalent to solving the normal equations:

where                                   is called the augmented Hessian Matrix.

The parameters consist of the camera part and the point part ( δ=[δc; δp]  ,     
J = [Jc, Jp]   , etc.) and most methods first solve the reduced camera system

where                                   is called the Schur complement,  
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Our Multicore Solution

 Problem restructuring to make bundle adjustment easily parallelizable.

 10x-30x Speedup on nVidia Tesla C1060 GPU.

 5x-10x Speedup on Dual Intel Xenon E5520 (16 cores).

 Up to 80 % reduction in memory usage.

14K cameras, 4.5M points and 30M measurements in 2 minutes!

Code available at http://grail.cs.washington.edu/projects/mcba/

► Exploit associativity of multiplication to eliminate matrix products

Using the augmented Hessian matrix without forming it

Using the Schur complement without forming it or forming the Hessian
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► Replace large matrices with on-the-fly computation

• Substantial memory savings.

• Increased GPU throughput due to reduced memory contention.

Dubrovnik Final: 4.6K cameras, 1.3M points, and 8M measurements

Memory usage can be reduced from 1.9G to 0.55G
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