
► Map problem structure to use both multi-threading and SIMD

• Map computation loops to threads on compute cores

- A few threads on CPU; many threads on GPU

• Align parameter size to 4 and employ SIMD arithmetic

- CPU SSE operates on 4 floats; CUDA Warp operates on 32 floats

Venice Final : 14K Cameras, 4.5M points, and 30M Measurements.
(LM is profiled with a fixed number of 10 CG iterations).

► Use single-precision arithmetic with proper normalization
• Normalize parameters to precondition the distribution of Jacobians.

• Maintain accuracy while achieving higher throughput.

Experiments (comparing with Agarwal et al. Bundle Adjustment in the Large,ECCV2010)

Venice Final (13775 cameras, 4.5M points, 50 LM steps in 2 minutes)

Dubrovnik Skeletal (356 cameras, 226730pts, 50 LM steps in 5 seconds)

Ladybug (1723 cameras, 156502pts, 50 LM steps in 2 seconds)

• Comparable convergence behaviors.

Bundle Adjustment

Bundle adjustment is the joint non-linear refinement of camera and point

parameters. Levenberg-Marquardt (LM) is the most popular method for

solving bundle adjustment. Let J be the Jacobian, each step of LM solves a

regularized linear least squares problem:

which is equivalent to solving the normal equations:

where is called the augmented Hessian Matrix.

The parameters consist of the camera part and the point part (δ=[δc; δp] ,
J = [Jc, Jp] , etc.) and most methods first solve the reduced camera system

where is called the Schur complement,

Multicore Bundle Adjustment
Changchang Wu1, Sameer Agarwal2, Brian Curless1, Steven M. Seitz1, 2

1 University of Washington at Seattle, 2 Google Inc.

Our Multicore Solution

 Problem restructuring to make bundle adjustment easily parallelizable.

 10x-30x Speedup on nVidia Tesla C1060 GPU.

 5x-10x Speedup on Dual Intel Xenon E5520 (16 cores).

 Up to 80 % reduction in memory usage.

14K cameras, 4.5M points and 30M measurements in 2 minutes!

Code available at http://grail.cs.washington.edu/projects/mcba/

► Exploit associativity of multiplication to eliminate matrix products

Using the augmented Hessian matrix without forming it

Using the Schur complement without forming it or forming the Hessian

JJTJTJ JT
JJT

► Replace large matrices with on-the-fly computation

• Substantial memory savings.

• Increased GPU throughput due to reduced memory contention.

Dubrovnik Final: 4.6K cameras, 1.3M points, and 8M measurements

Memory usage can be reduced from 1.9G to 0.55G

Problem

Form Hλ

Cholesky

Cholesky

Form S PCG

Dense factorization

Lourakis’s SBA

Sparse factorization

Zach’s SSBA

Implicit S + PCG

PCG

Form J

Implicit Hλ + PCG

Implicit S + PCG

Agarwal et al. Bundle

Adjustment in the

Large, ECCV2010

Naïve CPU

Non-SSE, Single-threaded

CPU SSE

Single-threaded

CPU SSE

Multi-threaded

GPU

(Not storing Jc)

J x 1.2X

JTy 2.3X

LM 2.0X

J x 5.9X

JTy 12X

LM 10X

J x 15X

JTy 23X

LM 25X

CPU GPU

Jx 0.56X 1.44X

JTy 0.48X 1.09X

LM 0.46X 1.27X

Problem

Restructuring

Fine-grained Parallelization

On-the-fly Jacobian

Our methods

http://grail.cs.washington.edu/projects/mcba/
http://grail.cs.washington.edu/projects/mcba/

