Discovering Point Lights with Intensity Distance Fields
Supplementary Material

Edward Zhang
University of Washington
Seattle, WA

edzhang@cs.washington.edu

1. Specular Materials

In our derivation, we defined the shading function
to be
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S(g,p) = (1)

and the Intensity function to be

I(q,p) = 2)

In Figure la, we show an example of I(q,p) for a
Cook-Torrance microfacet BRDF[1]. In comparison to
the diffuse I(gq,p) in Figure 1d, the darker area of the
lobe is oriented such that it will more strongly limit
the potential intensity of lights in the mirror direction
from observation gq.

To more intuitively reason about how our method
interacts with specularity, it is helpful to assume a min-
imum intensity for point lights illuminating a scene.
This is reasonable because we usually expect the num-
ber of point emitters in a scene to be fairly small; for a
fixed amount of total power in a scene, fewer lights im-
ply that each individual light should have higher power.
Therefore, lights are unlikely to lie in areas with low
IDF values. This implies that the observations limit-
ing these areas are pruning away these regions from
consideration.

Now, we consider specularity. Traditional specular-
ity triangulation methods interpret a single bright spec-
ular highlight as a strong indicator of a light source in
the mirror direction. However, with our formulation,
a single bright observation is not assumed to be due
to specularity — it could just indicate a nearby point
light. Instead, our formulation effectively uses the con-
trapositive of this reasoning: a lack of specular high-
light means that it is wnlikely for a light to fall along
the mirror direction.
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Figure 1: Here we compare our scene transforms by comparing
two scenes with the same light locations, but different materials.
The top row corresponds to a scene where the left wall is specular
and the remaining walls are diffuse; the bottom row corresponds
to the scene where all walls are diffuse. In la, we show I(g,p) for
a microfacet BRDF, where observation q is the red point viewed
from the direction of the arrow. For comparison, a diffuse I(q, p)
is shown in 1d. In 1b, we show the full IDF for the specular
scene, where all the points on the left wall are viewed from the
red point. Due to the specular observations, the center of the
scene is darker than the same region in a diffuse scene with the
same light positions in le. The Limiter field behaves similarly
at the true light positions in both cases (1c and 1f).

This implies that additional observations of the
same point greatly help our method. For example, if
we viewed the point in the specular highlight from a
different angle for which it was not in the specular high-
light, that would provide evidence against the presence
of a nearby point light (because the observation would
limit the brightness of nearby points), but leave open
the possibility of a light in the original mirror direc-
tion. Viewing non-specular highlights thus allows our



method to prune out more possible light positions.
We show an example of a full IDF for a scene with
one specular wall (the left wall) in Figure 1b, where
each point on the specular wall is viewed just once. We
note that L£(p), and by extension, V(p), qualitatively
functions the same way as in the diffuse case; however,
in specular scenes, we prefer having a denser set of
observations in order to make the maxima clearer.

2. Occlusion

Occlusions do not significantly impact the perfor-
mance of V(p) as a candidate position proposal scheme
(Figure 2), since the voting function does not explicitly
identify occlusion boundaries. D(p) is often discontin-
uous along shadow boundaries, and sometimes can di-
rectly result in light locations at the intersections of the
discontinuities (Figure 2a). This is equivalent to trac-
ing rays from shadow edges to the associated occluders
and finding the intersection.

(a) (b)

Figure 2: In an extreme case, occluders entirely block some sur-
faces from being lit (2a). More commonly, occlusion bound-
aries result in discontinuities in the IDF (2b). The shadow edges
(white dashed lines) are visible in the Limiter field (2¢) as the
limiters of larger uniformly-colored regions. The inset shows a
region in £(p) where shadow edges can result in false peaks in
the V(p). These can be removed (2d) by determining whether
or not occlusion was responsible for the local variation in the
limiter field.
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Figure 3: Consider point p and L£(p) on the scene surface, with
the line from p to L(p) tangent to some occluder. Note that
B(L(p)) decreases to the left, in the opposite direction from the
normal to the occluder at the tangent. If we examine another
point p’ to the left of p, without the occluder we would also
expect L(p’) to be left of L(p) (since p’ is the same distance from
L(p') as p is from L(p), and B(L(p')) < B(L(p))). However, due
to the occluder, instead L(p’) is the first unoccluded point to
the right of L(p). As p’ moves to the left, £L(p’) continues being
forced to the right due to the occluder, and if the occluder is far
from L(p) the amount by which £(p’) moves can become very
large. This gets detected as a peak in V(p).

For a point near an occluder, a small change in po-
sition can result in a large change in the surface re-
gions visible to that point. If the limiter happens to
lie in these disoccluded regions, then we will get false
peaks in V(p) (Figure 2c¢-2d). These false peaks are
caused when two conditions are met (as illustrated in
Figure 3):

e the line from L(p) to p is tangent to an occluding
surface, and

e B(L(p)) increases in the direction of the normal of
the occluding surface.

These conditions can be detected when computing
L(p); however, in practice, we find that discarding can-
didate positions that are too close to scene surfaces is
enough to filter out these false peaks.

The main practical issue with working with occlu-
sions is that each I(q,p) computation requires an oc-
clusion test against the entire scene. Our 2D test sets
had few enough primitives to allow such full scene in-
tersection tests to be feasible. In the 3D case, we create
a depth environment map for each p so that testing for
occlusion between z and p is simply a depth lookup. In
practice, we found that the surfaces used to compute
V(p) in our real-world 3D data were effectively unoc-
cluded from the entire scene, so to save computation
time we did not factor in occlusion in our results.

3. Real-world 3D Datasets

We scanned two real world scenes to demonstrate
that our method works even when some of the assump-
tions are violated. In both scenes, we set up two bare



light bulbs (approximating isotropic point sources) and
measured their positions by hand.
The process for each scene is as follows:

1. First, we scan the scene using the Lenovo Phab2
Pro Tango phone, reconstructing the scene geom-
etry using the Tango software.

2. We then perform exposure correction on the RGB
images, following Zhang et al. [2], project the im-
ages onto the geometry, and take the robust mini-
mum (average of the values between the first quar-
tile and the median) intensity as the B(q) (with a
diffuse assumption).

3. We manually segment out some surfaces in the
scan that are believed to have the same diffuse
reflectance (generally the walls).

4. Using only B(q) at these surfaces, we run our it-
erative algorithm, computing V(p) and extracting
candidate positions.

5. During candidate position extraction, we filter out
unlikely light positions, namely those that lie very
close to scene surfaces. We also filter out light
positions p where D(p) is smaller than some min-
imum light intensity threshold, following the rea-
soning in Section 1.

6. During the optimization portion of our algorithm,
we solve for light intensities, positions, as well as
an unknown constant ambient light intensity.

7. To evaluate the positional accuracy of our sys-
tem, we compare the optimized positions with the
hand-measured ground truth positions.

8. To evaluate the accuracy of our estimated inten-
sities, we compared the relative intensities of the
two lights by fixing one of the intensities to 1 (since
the captured images could not provide absolute in-
tensities). We obtained ground truth relative light
intensities by taking an image of a diffuse scene lit
only with one light, then replacing that light with
the second light in the exact same position. Due
to linearity of light, we can take the average ra-
tio between the two images to be the relative light
intensity.

The first scene, shown in the main paper and re-
produced in Figure 4, is a small, relatively bare room.
One light gives a clear maximum in V(p) (Figure 4c),
and after a few iterations, another maximum appears
(Figure 4d), at which point our optimization succeeds.
No other maxima are detected. The error in the es-
timated positions, relative to hand-measured ground
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Figure 4: Results of running our method on a scanned 3D
dataset. In 4a-4b, we show the scanned scene colored with the
averaged observations B(q). The recovered light locations are
rendered as red spheres; compared with the ground truth, the
position error is 4% of the scene radius. In the bottom two im-
ages, we only show the B(q) used in our computation. In 4c, the
initial medial axis and V(p) are shown, with a clear maximum
(circled in green) at the location of one of the light sources. After
a few iterations (4d), the second light position is also revealed.

truth, were 0.05m and 0.08m in a 2m by 2.6m by 1.6m
room, for a relative error of about 5%. The estimated
intensity for the second light was 1.43, while the mea-
sured relative intensity was 1.39.

The second scene (Figure 5) is a harder case: the
room was larger, had more complex geometry (a
vaulted ceiling), included clutter, and was incomplete
and not closed. One light gives a clear maximum in
V(p) (Figure 5¢); after several iterations, we see several
new maxima appear. Most of them are filtered out us-
ing our heuristics, and we are left with four candidates,
including the original maximum (Figure 5d). After op-
timization, the maxima that did not correspond to true
lights had very small intensities compared to those that
did represent true lights (less than 5% of the inten-
sity). To get our final solution, we optimize again but
remove the lights with low intensities. The error in the
estimated positions, relative to hand-measured ground
truth, were 0.26m and 0.31m in a 3.5m by 3.4m by
2.6m room, for a relative error of about 10%. The es-
timated intensity for the second light was 1.42, while
the measured relative intensity was 1.39.
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Figure 5: Results of running our method on a scanned 3D
dataset. In 5a-5b, we show the scanned scene colored with the
averaged observations B(q). The original light locations are ren-
dered as green spheres, while our recovered light locations are
rendered as red spheres. In the bottom two images, we only
show the B(q) used in our computation. In 5c¢, the initial medial
axis and V(p) are shown, with a clear maximum (circled in green)
at the location of one of the light sources. After a few iterations
(5d), several more maxima appear (rendered as red spheres); two
among these are close enough to the true light positions for the
optimization to succeed.
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