We present an algorithm that takes a single frame of a person’s face from a depth camera, e.g., Kinect, and produces a high-resolution 3D mesh of the input face.

- A single depth frame encodes information about a person’s facial features.
- Hallucinate details from a high-resolution dataset of 3D face scans.

We first align the input RGBD frame to the generic mesh G. Then the input depth is divided into five facial parts via the alignment, and each facial part is matched independently to the dataset resulting in five high-resolution meshes. Finally, the matched meshes are combined with the input into a single mesh to produce the output.

Aligning a Single Depth Frame

- 83 fiducial points on RGB using Face++[1]
- Rigid pose alignment via Procrustes analysis[2]
- Non-rigid registration[3]
- Define five facial parts

Part-based Matching

Distance function: a combination of pseudo-landmarks and a histogram of azimuth-elevation angles of normals

$$D_{pseudo} = \sum_{i=1}^{M} \left| \theta_{i} - \theta_{0}\right|^2$$

$$D_{nora} = \sum_{j=1}^{N} \left(\mathbf{v}_{j}^{G} - \mathbf{v}_{j}^{G_{0}} \right)^{T} \mathbf{R} \left(\mathbf{v}_{j}^{G} - \mathbf{v}_{j}^{G_{0}} \right)$$

Merging

- Skin region: vertex normal transferred from matched shapes. Hair region: original normal kept
- Combine depth and normal[4]

Results

We used a Microsoft Kinect to capture the inputs in resolution 640 x 480; the face part of the frame was about 100 x 100.

Conclusion

We presented our approach for reconstruction of a high-quality 3D face mesh from a rough, noisy, low-resolution single Kinect depth frame.

Our key contribution is to show that extremely simple part-based matching to a large set of faces enables the creation of remarkably accurate high-resolution meshes of novel people from noisy single-frame input. The resultant meshes can be further used for facial expression modeling, as we also demonstrated.

Dataset

- A large dataset of high-resolution 3D face meshes in a neutral expression (no texture).
- 1204 Caucasians, 652 females and 552 males, ages 3 to 40, captured in a neutral expression.
- All the meshes in the dataset have been put into dense correspondence using [3].
- Each includes 15k-20k vertices.

References: