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(a) Left image (b) Right image (c) Labeled flow field (d) Reconstructed image
Figure 1. Dense pixel correspondence between two images of a scene with moving rigid objects. Images (a) and (b) are the input, and
(c) is the flow field from (a) to (b) with color labelings. Red indicates occluded areas, and blue and green indicate two motions modeled
by fundamental matrices for the bird and the rest of the background(note that the flow vectors are uniformly scaled to a shorter length for
visual clarity). Image (d) is the reconstruction of (a) based on the flow; red areas are occluded.

Abstract

We present a technique for computing a dense pixel cor-
respondence between two images of a scene containing mul-
tiple large, rigid motions. We model each motion with either
a homography (for planar objects) or a fundamental ma-
trix. The various motions in the scene are first extracted by
clustering an initial sparse set of correspondences between
feature points; we then perform a multi-label graph cut op-
timization which assigns each pixel to an independent mo-
tion and computes its disparity with respect to that motion.
We demonstrate our technique on several example scenes
and compare our results with previous approaches.

1. Introduction

Many real-world scenes contain multiple objects that un-
dergo independent motions. Two photographs of such a
scene taken at different moments in time and different view-
points will contain motions much larger than most optical
flow techniques can handle. In this paper, we consider the
problem of estimating a dense correspondence between two
such perspective views of a scene containing multiple, in-
dependent objects that undergo large, rigid motions.

Our algorithm computes this correspondence in a two-

stage process. First, each independent motion is discov-
ered by randomly sampling a set of sparse feature matches.
Then, each pixel in the reference view is assigned to a mo-
tion by optimizing a Markov random field formulation us-
ing graph cuts [5].

This two-stage process is very similar to the work of
Wills et al. [19]; while they model motions using homo-
graphies, we model motions with both homographies and
fundamental matrices. The advantage of using fundamen-
tal matrices is that the motion of an entire, rigid 3D object
can be modeled with a single fundamental matrix. Homo-
graphies, on the other hand, can only model the motion of
3D planes and thus multiple homographies are required to
describe the motion of a typical 3D object. In addition, our
approach can recover information about the 3D shape of in-
dependently moving objects.

The disadvantage of using fundamental matrices is that,
unlike other motion models (such as affine or planar per-
spective transformations) which explicitly provide a point-
to-point correspondence, a fundamental matrix only de-
scribes the motion of each pixel up to an epipolar line. Thus,
to compute a dense pixel correspondence using fundamen-
tal matrices as a motion model, we need to both assign each
pixel to a motion and choose a translation along that pixel’s
epipolar line to obtain a complete point-to-point correspon-
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dance. We use the term disparity to refer to this translation
because our work bears a strong resemblance to estimating
disparities for two-view stereo[13]. However, we handle
multiple motions by allowing each pixel to choose a dispar-
ity along one of multiple epipolar lines. To handle planar
objects, we also allow motions to be modeled with homo-
graphies and use a model selection heuristic to choose the
appropriate motion model.

The main contribution of our work is to show that dense
correspondence can be computed for scenes containing
multiple large, rigid motions by assigning both a fundamen-
tal matrix and disparity to each pixel using Markov random
field optimization. Since this optimization space is larger
than both the work of Wills et al. [19] and graph cuts-based
stereo algorithms [8], we also show that a solution can be
computed efficiently by limiting the range of possible dis-
parities using a good initialization technique and hierarchi-
cal estimation. To demonstrate the success of our approach
we show our dense correspondence results and compare
them to results computed using only homographies as a mo-
tion model. Finally, we demonstrate that we can reconstruct
the 3D shape of individual objects in the scene by using the
per-pixel disparities recovered by our approach.

2. Related Work

Techniques for computing dense pixel correspondence
between two views can be categorized by the type of mo-
tion. In the case of a static scene, the epipolar constraint
reduces the problem to two-view stereo[13]. Recent tech-
niques for Markov random field optimization such as graph
cuts [5] and belief propagation [15, 14] yield impressive so-
lutions to the stereo problem, but cannot be directly applied
to dynamic scenes, containing moving objects.

Techniques for dynamic scenes vary with the magnitude
of motion. If motions are small, differential techniques
based on the optical flow constraint are effective [10, 7];
extensions include discontinuous flow fields [4] and layer-
based motion segmentation [18, 1]. Hierarchical coarse-to-
fine estimation can increase the range of motion these tech-
niques can handle [2], but only up to a point; very large
motions require a different approach.

Techniques for computing dense, long-range correspon-
dence in the presence of large motions are less common, and
mostly use a feature-based registration approach. Torr [16]
explores methods for selecting different motion models, in-
cluding fundamental matrices and homographies, and pro-
poses a robust metric for model selection. As already men-
tioned, Wills et al. [19] follow a similar approach to ours
for computing dense correspondence between images with
large inter-frame motion; they have also extended their ap-
proach to handle non-rigid motion[20] using splines to fit
residual motion. In both cases, a planar projection motion
model is used to estimate an initial set of candidate motions;

we extend their approach by also using fundamental matri-
ces with per-pixel disparities.

Multi-body structure-from-motion techniques (such as
Vidal et al. [17]) estimate and segment rigid-body motions
from the projections of 3D points in two images using a fac-
torization approach. Our work uses similar inputs and mo-
tion models; however, our output and technical approach are
very different. In particular, we produce a dense 2D motion
field, while their work estimates 3D motions for a sparse set
of feature points.

The rest of the paper proceeds as follows. In Section 3
we describe the piecewise object registration algorithm in
detail, and in Section 4 we present the performance of our
algorithm on a variety of examples. In Section 5 we con-
clude and suggest areas for future work.

3. Piecewise Object Registration

Given two m × n images, Ileft and Iright, our goal is to
match every pixel in Ileft (where a pixel is an (x, y, r, g, b)
tuple) to at most one pixel in Iright. We formulate this task
as a labeling problem: each pixel p ∈ Ileft has a set of
candidate labels C(p) (corresponding to pixels in Iright),
and a labeling L assigns a label, L(p) ∈ C(p) to each
pixel p ∈ Ileft. An objective function, E(L) measures the
“quality” of a labeling. Typically, E(L) includes a data
term measuring the similarity of corresponding pixels and
a smoothness term for encouraging nearby pixels to have
similar labels (e.g., the corresponding pixels should also be
nearby). The goal of the labeling problem is to find the min-
imum cost labeling.

In general, the complexity of solving a labeling problem
depends on the number of pixels being matched, the number
of candidate labels for each pixel, and the form of the cost
function. For some cost functions, techniques such as belief
propagation and graph cuts can efficiently produce approxi-
mate solutions. In our pixel labeling problem, if every pixel
in Iright is a candidate label for each pixel in Ileft, the num-
ber of labels is mn. Finding even an approximate solution
with so many candidate labels can be prohibitively slow for
all but the smallest images.

We assume that objects in the scene are piecewise rigid
and therefore the motion associated with each rigid piece
can be explained by a single 2D or a 3D motion model;
namely a homography (for planar objects) or a fundamental
matrix plus disparity.

Because we do not know a priori how many rigid objects
are in the scene or how they are moving, we must first dis-
cover the dominant motions. To do so, we generate a sparse
correspondence between the two images using automatic
feature matching, then extract motions from the sparse cor-
respondence using RANSAC. Each extracted motion gen-
erates one or more candidate labels for pixels in Ileft—e.g.,
a fundamental matrix generates labels corresponding to the



pixels along an epipolar line. Finally, each pixel in Ileft is
assigned a single label using a graph cut optimization. We
will now elaborate on the components of our registration
algorithm.

3.1. Feature Detection and Matching

To extract motions between Ileft and Iright we detect
feature points in the two images using SIFT [9], Harris-
Affine [12] and MSER [11] feature detectors. The local im-
age information around the detected features is stored using
the SIFT feature descriptor. We obtained implementations
of these detectors and descriptors from the websites of the
respective authors. Next, we match feature points in Ileft

to feature points in Iright using the ratio test proposed by
Lowe [9], limiting matches to be between features found
by the same detector. The ratio test has been found to re-
duce the number of false matches. For each feature point f
in Ileft, we find the two feature points, f1 and f2, of Iright

whose descriptors have the smallest L2 distance (d1 and d2,
where d1 ≤ d2) to f ’s descriptor. If the ratio d1

d2
is less than

a user-defined threshold, the two feature points are added
to the set of matches. For many real world images, the ra-
tio test provides a robust measure for the quality of a feature
match. The results in this paper were generated using a ratio
threshold of 0.4. The result of this step is a set of matches
M between feature points of Ileft and Iright.

3.2. Fitting Motion Models

The next step is to discover the motions between the two
images by clustering feature matches in M that can be ex-
plained by a single motion model. We use a fundamental
matrix to model the 3D motion of objects in the scene. In
the absence of 3D cues we fall back on homographies, since
the motion of planar objects or the plane at infinity is bet-
ter modeled using a single homography. Our motion-fitting
algorithm is as follows:

motions = empty-list
M = the set of all feature matches

while M not empty

1. Extract the dominant 3D motion by
finding a fundamental matrix, F, in
M using RANSAC [6]

2. Compute a 2D motion model by fitting
a homography, H, to the matches
explained by F

3. If H explains most of the matches
explained by F then add H to
motions, else add F

4. Delete the matches explained by F
(or H) from M

(a) The first motion

(b) The second motion
Figure 2. Fitting motion models using feature matches. In this
scene, the camera is translating and the bird figure moves. Our
system detects both motions by fitting two fundamental matrices
to the feature matches, one for the background (green), the other
for the bird (blue).

In Step 3, we replace F with a homography if 95% of the
matches explained by F can also be accurately explained
by a homography. In Step 4, deleting the matches that have
been explained by an extracted motion moves the algorithm
towards termination.

An example scene where two motions are detected with
this algorithm is shown in Figure 2.

3.3. Multi-Label Optimization

After finding a set of motions, the final step is to com-
pute a dense correspondence between the pixels in Ileft and
Iright. We formulate this step as a multi-label optimization
problem and solve for a local minimum using graph cuts.

Each motion, mi, generates a set of candidate labels for
each pixel, p, in Ileft, where each label is a pair (motion,
disparity). The motion component of the pair identifies a
motion model in the list of motions generated in Section
3.2. The disparity component of the pair specifies an offset
from the disparity window center for that motion model.
For the homography motion model the disparity is always
0. Thus, each motion classified as a homography generates
a single candidate label for each pixel in Ileft.

Each motion described by a fundamental matrix restricts
correspondences for a pixel in Ileft to lie along an epipo-
lar line in Iright. The maximum number of pixels along the
epipolar line is

√
m2 + n2 (the length of the diagonal of

Iright). In order to efficiently find a good labeling, we re-
strict the number of candidates along this line to a disparity
window of size k. To find the center of the disparity window
for a given pixel p and fundamental matrix, we compute an
initial estimate of the corresponding pixel in Iright, given



the fundamental matrix, as described in Section 3.3.1. We
also compute the disparity window centers hierarchically, as
described in Section 3.3.2, which allows us to increase the
“virtual” size of the disparity window without introducing
additional labels.

We also add a special label ∅ to the set of candidate labels
for each pixel. The ∅ label will be assigned to pixels in Ileft

that we deem to be occluded in Iright, and which therefore
correspond to no pixel.

Finally, we compute a labeling L, which assigns each
pixel in Ileft one of its candidate labels. We want our label-
ing to match pixels in Ileft to pixels in Iright with similar
color. At the same time, we would like the motion compo-
nent of the labels to be piecewise-constant, and the disparity
component to be piecewise-smooth. This reflects our as-
sumptions that nearby pixels are likely to be projections of
the same object and that most objects have a smooth shape.

We use the following cost function to express these de-
sired properties of a labeling:

E(L) = Edata(L) + λ · Esmooth(L) (1)

The data term, Edata, measures how well the color of
each pixel, p, in Ileft matches the color of its corresponding
pixel, p′, in Iright:

Edata(L) =
∑

p∈Ileft

D(p, p′(p, L(p))) (2)

where p′(p, L(p)) is the mapping of p to the right image
given label L(p) (we abbreviate this as simply p′), and
D(p, p′) measures the distance between the RGB colors of
p and p′, unless p′ is deemed to be occluded or falls outside
the boundary of Iright. We define D as:

D(p, p′) =
{

γ if L(p) = ∅
d(Ileft(p), Iright(p′)) if L(p) �= ∅ (3)

where γ is a user-defined constant, and d is the Birchfield
measure of color distance [3], which is more robust to pixel
sampling effects than the L2 norm.

Esmooth measures how well the labeling agrees with our
smoothness assumption. Esmooth has the form:

Esmooth =
∑

(p,q)∈N

V (L(p), L(q)) (4)

where N is the set of 4-connected neighbors in Ileft. The
full form of V is defined as follows:

V (L(p), L(q)) =
α if Lm(p) �= Lm(q)
min(|Ld(p) − Ld(q)|, β) if Lm(p) = Lm(q)

(5)

where Lm(p) is the motion component of p’s label, Ld(p) is
the disparity component of p’s label, and α and β are user-
defined constants. To ensure that our smoothness term is a
metric we require α ≥ β

2 . We define the constants as λ =
0.1, γ = 0.4, α = 10, and β = 10 for all of our examples.
We use the graph cut alpha-expansion algorithm of Boykov
et al. [5] to find a labeling whose energy is within a constant
factor of the global minimum.

3.3.1 Estimating the Window Center

Each fundamental matrix restricts the candidate matches of
a pixel in Ileft to pixels on an epipolar line in Iright. Ide-
ally, we would treat every pixel on this line as a label in
our optimization. However, to reduce the size of the prob-
lem, we limit the candidate correspondences generated by
a fundamental matrix to a window centered around an ini-
tial guess for each pixel’s match in Iright. To find the initial
estimate, we first fit a similarity transformation to the fea-
ture matches used to generate the fundamental matrix. For
each pixel p ∈ Ileft, this transformation is applied to p’s
location, and the transformed location is projected onto p’s
epipolar line given the fundamental matrix. The location of
the pixel in Iright closest to this projected location is used as
the center of the disparity window for that pixel and motion
model.

3.3.2 Hierarchical Estimation of Disparity Window
Center

For very large motions in high-resolution images, our es-
timate of the window center may still be considerably far
from the correct match, necessitating the use of large dis-
parity windows. To increase the “virtual” extent of the dis-
parity windows without adding more labels, we use a Gaus-
sian image pyramid to hierarchically estimate the center of
the disparity window. We run the graph cut optimization
on each level of the pyramid, from coarsest to finest. The
disparity window center for the coarsest level is chosen as
in Section 3.3.1. For the rest of the levels we use the dense
correspondence computed in the coarser levels to initialize
the disparity window centers in the finer levels.

4. Results

In this section, we demonstrate our technique on four
examples with varying amounts of motion. The elephant
scene (Figure 3) is captured with a static camera and in-
cludes a single moving object. The bird scene (Figure 1)
and the face scene (Figure 4) are captured with a moving
camera and contain one moving object. Finally, the desk-
top scene (Figure 5) contains multiple moving objects and
is shot with a moving camera. These scenes are challeng-
ing because they exhibit large motions, resulting in large



occluded areas, and contain textureless regions, such as the
table surface, and specular objects, such the metal can.

In all our examples, we compute a pixel-to-pixel cor-
respondence from the left image to the right image. For
a 320x240 image pair the feature detection and matching
takes 2 minutes to compute. The graph cut optimization
runs for 10 to 20 minutes depending on the number of mo-
tion models in the scene, using two pyramid levels and a
search window size of 40 pixels. To test our algorithm, we
synthesize the left image using the dense correspondence
field computed by our algorithm. We visualize the corre-
spondences in a gridded flow field, where the background
color indicates the motion labels (red pixels indicated oc-
cluded regions). For our scenes the flow vectors are very
large, and thus hard to visualize clearly. To make our flow
visualizations more comprehensible, we shorten the flow
vectors using a uniform scale.

In Figure 3, we capture two frames of a moving elephant
from the same view point. Our motion fitting algorithm au-
tomatically finds a homography to explain the background
and a fundamental matrix to explain the motion of the ele-
phant. In Figure 4, correspondences for the upper body of
the person and the background regions are correctly com-
puted; however, some regions are incorrectly classified as
occluded, mostly due to regions of low texture information
and the use of a small disparity window. Figure 5 demon-
strates the ability of our algorithm to find correct correspon-
dences even when the displacement is very large (in this
case, over 30% of the image width).

Next we show an application of our algorithm. We re-
cover the motions of independently moving objects; how-
ever, if we consider a single independent moving object, we
can equivalently think of the object as static and the camera
as moving. Thus, we have two views of each independent
object, and can use the recovered disparity maps to infer the
shape of the visible portions of such objects. Given the dis-
parity map and the fundamental matrix for an object, we can
create a projective reconstruction for that object. If the in-
trinsic parameters of the camera used to image the scene are
known, we can upgrade the reconstruction to a Euclidean
reconstruction. In Figure 6 we show a reconstruction of the
ceramic bird created using the output of our algorithm and
estimated intrinsic camera parameters.

Finally, we show two results computed using only ho-
mographies as a motion model, which is similar to the ap-
proach of Wills et al. [19] (Figure 7). Notice that multiple
homographies are required to describe the motion of a sin-
gle 3D object, while our results can describe an object with
a single fundamental matrix and provide depth information.

5. Conclusion and future work

In this paper we describe a framework for computing
dense, pixel-to-pixel correspondence between two images

containing multiple objects that move independently. Un-
like previous techniques, our approach can handle large mo-
tions of both 3D objects and 3D planes. In addition, we can
recover depth information for every independently moving
object in the scene. We are able to achieve high quality
results for many scenes because we use fundamental ma-
trices as well as homographies to model motion. However,
we found that for some scenes, such as those containing
mostly planar objects, using homographies alone as a mo-
tion model can achieve better results, because they model
planar scenes with fewer degrees of freedom.

There are many avenues for future work. Our framework
relies heavily on feature detectors such as SIFT [9] to estab-
lish a sparse correspondence between two images. The den-
sity of this sparse correspondence is crucial for extracting
every independent motion in the scene; thus, our algorithm
fails to produce good results for low resolution images. We
also cannot handle non-rigid objects or piecewise-rigid mo-
tion. In future work, we would like to make our framework
robust to these phenomena.

Large occluded or unoccluded regions are also difficult
for our algorithm to handle. Our framework can fail to
accurately identify such regions, especially when the oc-
cluded/exposed regions are visually similar to other parts
of the scene. In such cases the matching is inherently am-
biguous, because exposed regions in the left image could be
explained by a phantom motion of the exposed regions in
the right image, and vice versa.
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(a) Left image (b) Right image (c) Flow visualization (d) Reconstructed image
Figure 3. Elephant scene and results. The camera is static and the elephant moves.

(a) Left image (b) Right image (c) Flow visualization (d) Reconstructed image
Figure 4. Face scene and results. Both the camera and the person move.

(a) Left image (b) Right image (c) Flow visualization (d) Reconstructed image
Figure 5. Desktop scene and results. The camera, the box and the can move.

Figure 6. 3D reconstruction of the bird from dense correspondence. The supplementary video shows the object rotating continuously.

Figure 7. Results for two scenes computed using only homographies as the motion model; compare these results to those in Figures 4 and 1
that are computed using both homographies and fundamental matrices with per-pixel disparities.


