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Abstract

We propose a novel framework for reconstructing ho-
mogenous, transparent, refractive height-fields from a sin-
gle viewpoint. The height-field is imaged against a known
planar background, or sequence of backgrounds. Unlike
existing approaches that do a point-by-point reconstruction
– which is known to have intractable ambiguities – our
method estimates and optimizes for the entire height-field
at the same time. The formulation supports shape recovery
from measured distortions (deflections) or directly from the
images themselves, including from a single image. We re-
port results for a variety of refractive height-fields showing
significant improvement over prior art.

1. Introduction
Recovering surface geometry from images is a long-

standing problem in computer vision. Transparent, refrac-
tive surfaces are among the most challenging to recover, in
large part due to the non-linearity inherent in refraction.

An important class of refractive surfaces are height fields
comprised of a single refractive material, which arise when
modeling liquids [7], as well as man-made objects, such as
many “obscure glasses” used to separate spaces with a dis-
torting visual barrier [10]. We focus on reconstructing these
surfaces, in particular differentiable height fields, imaged a-
gainst a known background (or set of backgrounds) from a
single viewpoint.

This problem, originally studied in computer vision by
Murase [7], remains only partially solved. In that formula-
tion, and others that have followed, the refractive surface is
imaged against a planar background. Per-pixel deflection-
s are estimated and then used to recover surface normals,
which can in turn be integrated to yield a height field. How-
ever, it is not possible to accurately estimate normals with-
out knowing the depth in the first place [6]. Thus, accurate
surface reconstruction in this setting has remained elusive
without resorting to multiple viewpoints or unusual back-
ground emitters.

In this paper, we address the fundamental shortcoming

of estimating normals and then the height field by instead
formulating the problem directly in terms of the height field
itself. As is common, we assume no interreflections (and
for the direct image approach, minimal impact from Fresnel
attenuation), and we also assume an orthographic camera.
In our formulation, normals are simply derived properties,
giving rise to coupled PDEs over the height field. Our for-
mulation supports estimating the geometry from per-pixel
deflections (“deflection maps”) or directly from the image
measurements through a global optimization over the height
field. In the deflection-map formulation, we derive a novel
isocontour regularization term based on co-planarity of rays
to constrain the optimization. We demonstrate that our ap-
proach is measurably more accurate than the normal-based
approach with comparisons to ground truth laser scans. We
present results derived from high quality deflection maps
captured using multiple backgrounds. Finally, we show de-
tailed object reconstruction from a single image of a known
background by optimizing to match observed pixel values.

Our primary contributions are (1) a framework based on
differentiable height fields that overcomes the pixel-wise,
height-normal ambiguity and (2) a method for optimizing
each height field from a single image rather than a deflec-
tion map. This second contribution is important because it
avoids dependence on precisely recovering a deflection vec-
tor (two variables) per pixel, instead focusing on recovering
the height field (one variable per pixel) that indirectly gives
rise to deflections and explains the image measurement.

In the remainder of the paper, we discuss related work
(Sec. 2), and then provide the background formulation for
our problem (Sec. 3). We describe objectives and opti-
mization strategies for recovering shape from a deflection
map (Sec. 4) and directly from an image (Sec. 5). We
then describe experimental procedures and results (Sec. 6)
and conclude with discussion of limitations and future work
(Sec. 7).

2. Related Work
Shape from refraction has been an active area of re-

search. See [4] for an excellent survey of this area, as well
as shape from reflection. Several efforts have focused on
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height field surfaces, with the common assumption that in-
terreflection is negligible. Murase’s pioneering work [7] on
reconstructing water surfaces uses optical flow between a
known background and each image to recover approximate
per-pixel normals. Normal recovery is based on a given av-
erage surface height and index of refraction, from which
the height field may be recovered by integration. As not-
ed in the previous section, the normals cannot be recov-
ered accurately without first knowing the per-pixel height-
s, a significant limitation of this approach. More recently,
Tian and Narashimhan [13] recover time-varying distortion-
s of an unknown background beneath a water tank, based
on the behavior of water waves. They demonstrate sur-
face reconstructions as well, but these are similarly based
on normal estimation and integration. Morris and Kutu-
lakos [6] overcome the height-normal ambiguity by using
two views which are jointly matched to each other and a
known background and then estimating height and normal
per pixel, as well as the index of refraction. Most recent-
ly, Wetzstein et al. [15] employ a novel background that
includes a lenslet array to encode directions as well as ver-
tical (1D) positions of emitted light rays, enabling direct
recovery of normals and a sparse set of heights. This encod-
ing implies a spatial vs. directional resolution trade-off, but
enables single view recovery. The surface is reconstructed
from integration of normals guided by sparsely recovered
depths.

Refractive height fields fall into the category of single-
interface refractive surfaces discussed by Kutulakos and
Steger [5]. They prove that pointwise estimation of surface
position is not possible without using two views or measur-
ing the refracted rays. However, we show in this paper that
refractive surface reconstruction is in fact possible from a
single view without encoding refracted ray directions if we
move from pointwise estimation to integrable height field
surface estimation.

Related to shape from refraction is shape from specu-
lar reflection. We note that this problem is somewhat easi-
er, as reflection does not have the non-linearity introduced
by refraction, though still fundamentally difficult. Tari-
ni et al. [12] recover surfaces from reflection to a set of
known backgrounds and estimate shape from recovered dis-
tortions, applying an alternating optimization over height
fields and normals. We instead optimize for the height field
directly, in the refractive setting with unknown index of
refraction, and demonstrate single-image recovery. Shape
recovery from specular flow has also gained increased at-
tention in recent years [9, 1, 2, 14]. We note that Vasi-
lyev et al. [14] in particular have begun exploring the use of
surface integrability in shape recovery from specular flow
induced by motion of an unknown, distant environment,
demonstrating synthetic results for this scenario.

For a more complete view of shape from refraction and

reflection that includes non-height-field surfaces, we again
refer the reader to Ihrke’s survey [4].

3. Background Formulation
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Figure 1. Geometry of shape from height field refraction.

In this section, we develop analytical expressions that
describe the refraction of the cameras rays from an ortho-
graphic camera looking down upon a refractive surface.
These expressions will be used in the surface reconstruc-
tion approaches described in the sections that follow. Fig. 1
illustrates the geometric configuration.

The refracting surface is assumed to be a height field
[x, y, h(x, y)] that sits upon a background image B(x, y)

placed on the xy-plane z = 0. We assume no interreflec-
tions, that each camera ray gets refracted exactly once be-
fore hitting the background image. We also assume that the
surface is G1 continuous.

The image plane of the orthographic camera is placed
at some height z1. We will denote the observed image by
I(x, y). The observer is in a medium with refractive index
⌘1, and the refracting surface h is made up of a material
with an constant but unknown refractive index ⌘2. We will
assume that ⌘2 > ⌘1; i.e., the refracting surface is denser.
We assume that ⌘1 is known, typically the index of refrac-
tion of air.

For every point [x, y, z1] in the observed image, there
is a camera ray [x, y, z1] + ↵ [0, 0,�1] that gets refracted
to the point [x+ u(x, y), y + v(x, y), 0] in the background
image. We will refer to �(x, y) = [u(x, y), v(x, y)] as
the deflection vector. Let us derive an analytic expression
for �(x, y). Since we will be considering the same point
(x, y) throughout, in the interest of brevity we will drop the
explicit dependence on x and y from various quantities.

For a point [x, y, h] on the refracting surface, the normal



vector is given by
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If r1 is the direction of the incoming ray, n is the nor-

mal at the point of refraction and r2 is the direction of the
refracted ray, then Snell’s law tells us that

⌘2r2 = ⌘1r1 + (⌘1 cos ✓1 � ⌘2 cos ✓2)n (3)

Where, ✓1 and ✓2 are the angles between the normal direc-
tion and the incident and refracted rays respectively. In our
setting,
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where ⌘ = ⌘2/⌘1 is the relative index of refraction. Then,
after some straightforward substitutions, we have
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Starting from (x, y, h) the refracted ray along the direction
r2 and parameterized by distance along the ray, µ, intersects
the plane z = 0 at [x+ u, y + v, 0], i.e.
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µ

⌘

[�⇠h

x

,�⇠h

y

, ⇠ � 1] = [x+ u, y + v, 0]

(10)

Eliminating µ from this system of equations gives us
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Observe that

Lemma 1. ⇠ < 1

Proof. Suppose not. Then
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Since 0 < ⇢  1, the left hand side is always non-negative.
The only way this inequality could be satisfied is if both
sides are zero. This would happen with ⇢ = 1 and ⌘ = 0,
but the latter is not possible.

Thus (11) is always well defined. It is now straightfor-
ward to see that the following two lemma are true.

Lemma 2. ⌘1 = ⌘2 ! ⇠ = 0 ! �(x, y) = 0

Lemma 3. h(x, y) = c ! �(x, y) = 0.

It is also worth observing here that methods that start
from �(x, y) and solve for depths and normals indepen-
dently have a fundamental ambiguity [6]. Since the nor-
mal to the surface depends only on h

x

and h

y

, treating the
normal independent of the surface height is equivalent to
treating h

x

and h

y

as variables independent of h. Doing
so would turn (11) from a system of non-linear PDEs to
non-linear algebraic equations in three unknowns, which in
general will have an infinite number of solutions.

4. Reconstruction from a Deflection Map
From (11) we have a coupled system of non-linear par-

tial differential equations. Given a deflection map �, one
way to solve for h(x, y) would be to minimize the following
functional (a summation over image pixels):
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We expect the input deflection map to be corrupted by
errors and noise. To counter this, we introduce a novel
regularization term based on a characterization of the iso-
contours of h. The following lemma gives us a constructive
method for identifying the isocontours of h.

Lemma 4. Let [x0, y0] be an arbitrary point in the domain
and if �(x,y) = [u,v] is a noise free deflection map. Then
the curve

x(t) = x0 +

Z
t

0
v(x(s), y(s))ds (15)

y(t) = y0 �
Z

t

0
u(x(s), y(s))ds (16)

is an isocontour of h.
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The key fact used in this proof is that the deflection vector
at each point [x, y] is parallel to the gradient of h at that
point, i.e., h

x

v � h

y

u = 0. A more geometrical way to see
this is to observe that the gradient rh is collinear with the
projection of the normal to the surface onto the xy-plane.
Similarly the deflection vector �(x, y) is aligned with the
projection of the refracted ray. By Snell’s law, the normal
and the refracted ray are constrained to be co-planar with
the viewing ray, thus their projections on the xy-plane must
be collinear. As a result, the direction perpendicular to the
deflection direction is also perpendicular to the height gradi-
ent and thus is tangent to a height isocontour. Fig. 2 shows
sparse contour curves of two pieces of obscure glass.

Thus, if ⌦(x, y) is the set of points on the isocontour that
starts from the point [x, y], we can define a regularization
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where w is a regularization constant. We use w = 100 in
our experiments.

4.1. Optimizing from a deflection map
Even if ⌘ is known, minimizing the energy defined in

Eq. (21) is a complicated nonlinear optimization problem,
and some care is needed to avoid trivial local minima. We
use a multi-scale optimization approach where, at each s-
cale, the optimization proceeds in two stages, similar to the
work of [11]. (We initialize with white noise at the coars-
est scale.) The advantage of the optimization process is
three-fold. The multi-scale scheme avoids poor local mini-
ma. The two-stage approach, and relaxation scheme in Eq
(23), accelerate convergence by breaking the non-linear op-
timization into sequences of convex optimizations, a com-
mon approach to such problems. The isocontour term adds
a physics-based constraint, reducing sensitivity to noise and
giving somewhat smoother results.

(a) (b)

(c) (d)
Figure 2. Contour maps of two pieces of obscure glass. We op-
erate on a 768 ⇥ 512 image grid. (a) and (b) show the images of
the glass examples under indoor illumination; both are flat on one
side, textured on the other. (c) and (d) show their contour maps
constructed from experimentally recovered deflection maps. Here
we only show one out of every 100 contour curves.

In the first stage, we lift the problem to a higher dimen-
sional space, and reduce its non-linearity by relaxing the
constraint
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We do this by treating h
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and h

y

as independent variables in
their own right and adding a term to the optimization prob-
lem that penalizes deviations from the true gradients, giving
us
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Here, � is a constant whose value is increased by a factor
of 2 at the end of each iteration. We now solve (23) using
coordinate descent by optimizing over h, h

x

and h

y

inde-
pendently.

At the end of this first stage we have a rough estimate
of the surface. In the second stage, we use this rough es-
timate to initialize the full optimization of (21), which we
solve using gradient descent, with an Armijo-Goldstein line
search.

As the relative refractive index ⌘ is unknown, we opti-
mize for possible height fields using a range of values for ⌘



(typically ⌘ 2 [1.4, 1.8] in increments of 0.02 for glass and
plastics) and pick the value of ⌘ that gives the smallest resid-
ual error. As an acceleration, we estimate the refractive in-
dex by performing reconstructions at lower resolution with
fewer optimization steps. In our implementation, we run the
refractive index estimation on a lower resolution image with
1/4 of the original size, and the number of gradient descent
steps are 1/10 of the number used for full reconstruction.

4.1.1 Computing isocontours from the deflection map

Considering a point (x0, y0), the trajectory of the isocon-
tour at that point is (v(x0, y0),�u(x0, y0)), according to E-
q. (15) and (16). By following the trajectory, the next point
is

(x1, y1) = (x0, y0) +
(v(x0, y0),�u(x0, y0))p
v

2
(x0, y0) + u

2
(x0, y0)

s, (24)

where s = 0.01 is a pre-defined distance between (x1, y1)

and (x0, y0). We then bilinearly interpolate the trajectory at
(x1, y1) from the deflection vectors on the four nearest grid
points. The process continues for 1000 steps, resulting in a
contour of length 10. A longer contour provides smoothness
constraints between farther away points and suffers from er-
ror accumulated during the curve tracking process. In Eq.
(20), ⌦(x, y) is a collection of points on the contour curve.
In practice we define ⌦(x, y) to be a set of pixels close e-
nough to the contour curve. The threshold is defined to be
0.1 of pixel width in our experiments.

5. Reconstruction from an Image
In this section, we describe the formulation for optimiz-

ing the height field directly from a single image. Given (11),
the observed image I(x, y) can be expressed in terms of the
background image B(x, y) as
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where F accounts for Fresnel attenuation of the refracted
ray and B is assumed to emit light equally in all directions.
In practice, F is close to one for a wide range of surface
normals; thus, we currently drop this term.

We can now pose a new optimization problem written
purely in terms of the two images and the refracting surface
h without introducing an intermediate deflection map �.
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This optimization problem opens up the possibility of
recovering the shape of a refracting surface from a single
image of a known background, for which dense, accurate
deflection estimation can be challenging.

5.1. Optimizing from an image
To minimize the energy defined in (26), we adopt a sim-

ilar multi-scale scheme as we did for minimizing (21). In
each scale, we perform gradient descent, with an Armijo-
Goldstein line search, to optimize h, h

x

, h

y

simultaneously.
Reasonable initialization of this optimization is impor-

tant, as the connection between surface geometry and image
observations is far less direct than it is for the surface ge-
ometry and deflections. As will be discussed in Section 6.2,
with suitable choice of background, we can get a rough esti-
mate of deflections from a single image, from which we can
recover an initial surface. This surface is then downsampled
and used to initialize the coarsest scale of the image-based
optimization.

6. Experiments and Evaluations
In this section, we demonstrate experimental results for

reconstructing refractive height fields from deflection maps
and directly from images.

Across all experiments we use a Canon DSLR camera
with a 400mm lens to approximate orthography. The ob-
jects we reconstruct are made of glass or plastic of unknown
index of refraction. Each is flat on one side with no over-
hanging surfaces on the opposite side, i.e., can be modeled
as a height field. We place the flat side directly against the
background.

6.1. Reconstruction from deflection maps
We first evaluate reconstruction from high quality deflec-

tion maps. Environment matting [3] can be used to recov-
er such deflection maps; we employ the variant described
by Shan et al. [10]. The procedure consists of displaying
a sequence of colored Perlin noise [8] patterns on an LCD
monitor and photographing the monitor both with and with-
out the object. We recover per-pixel kernels and simply use
the centroid of each kernel to set the deflections.

We compare our deflection-based technique with our im-
plementation of Murase’s algorithm [7]. Murase’s method
requires a known index of refraction and average height. As
we have neither a priori, we first run our recovery algorithm
and then provide Murase’s method with our recovered index
and average height. Fig. 3 shows a surface reconstruction
result of transparent dome glass. We show this example first
due to its simple and regular geometry.

We also compare the results to ground truth models. We
painted several objects and scanned them with a Cyberware
Model 15 laser scanner to obtain reference shapes. We then
align our surfaces and Murase’s surfaces to the scanned
models using a standard ICP algorithm and then compute
RMS errors. For this example, we used objects that are rel-
atively easy for Murase’s method as they are low relief. As
shown in Fig. 5, the recovered shapes appear somewhat sim-



(a) (b) (c) (d) (e)
Figure 3. Surface reconstruction results on an acrylic dome. (a) Acrylic dome under indoor illumination. (b), (c) and (d) show the surfaces
from Murase’s algorithm [7], our deflection based method, and a laser scanner. (e) shows a height profile extracted as a horizontal slice
through the center of the height fields.

Figure 4. Photos of refractive objects and corresponding recon-
structions using our deflection-based method. The flower object
was painted for the photograph to better visualize its shape.

ilar, but our method demonstrates measurable improvement
as the height profiles reveal. Numerically, the mean abso-
lute distance errors of our surfaces in Fig. 5(b) and (c) are
1.4 mm and 0.80 mm, respectively, an improvement over
Murase’s result of 1.9 mm and 1.3 mm.

Our method demonstrates significant improvement on
objects with larger height variation. One example is the
dome glass shown in Fig. 3. Our surface has a absolute
distance error of 0.51 mm, improving over Murase’s result
of 1.12 mm.

We demonstrate additional reconstructions using our
method in Figure 4.

6.2. Reconstruction from a single image
Here we describe our choice of background pattern and

results for height field reconstruction from a single image
against a known background using the image-based formu-
lation.

To recover a height field from a single image taken a-
gainst a known background using our image-based formu-
lation (Section 5), we take some care in choosing the exper-
imental setup and background. First, we require a back-
ground that emits light isotropically. LCD monitors ex-
hibit significant directional variation, especially vertically,
and were not suitable for these experiments. Instead we
employed a light box, commonly available in art supply s-
tores, that is comprised of several bright bulbs under a dif-

(a) (b) (c)

(d) (e)
Figure 5. Quantitative evaluation with laser scanned surfaces. Col-
umn (a), (b) and (c) show surfaces from Murase’s algorithm, our
deflection map based algorithm, and laser scanner, respectively, a-
long with their close-up views. (d) and (e) show a height profile,
each extracted as a horizontal slice through the center of the height
fields.

fusing surface. We then printed a pattern onto photo paper
and placed it over the light box; though the paper absorbed
light and thus required longer exposure times (0.5 seconds
at F/24, ISO 100 in our experiments), it served the addition-



al purpose of more evenly diffusing the light.
Second, we must choose a background pattern. As not-

ed in Section 5, we initialize the image-based optimiza-
tion using the results of the deflection-based optimization.
Thus, we desire a pattern from which approximate deflec-
tions may be recovered. Chuang et al. [3] employ color
ramps to recover deflections from a single image in envi-
ronment matting. These rough deflections may be suitable
as a starting point, but we also desire some structure for the
image-based approach to match during optimization. We
take a hybrid approach. We create a horizontal ramp from 0
to 255 in the red channel, a similar vertical ramp in the blue
channel. To provide structure for image-based optimiza-
tion, we put a high-pass filtered Perlin noise [8] pattern in
the green channel.

In an ideal situation, we would be able to recover a rough
deflection map from the red and blue channels, and then
proceed with the two-step recovery, using the full image
for image-based optimization. In practice, the red and blue
ramps are piecewise constant when spread over a large area;
thus, we compose a pattern by repeating these ramps over
smaller areas, as shown in the left column of Figure 6. Fur-
ther, the camera does not observe these color channels di-
rectly; a shade of red, for instance, will appear as a mix of
red and green in the camera. To reduce this color cross-talk
effect, we compute a color look-up table that maps the ob-
served colors to the idealized colors and use the look-ups to
approximately decouple the channels, generating a “color-
corrected” image. Note that we only use the color-corrected
image for locating local windows. The closest color match-
ing is performed on the non-color-corrected image pair.

Finally, to compute a rough per-pixel deflection estima-
tion, we use the red and blue values of a pixel to locate a
local window (11⇥ 11) on the no-glass background. In our
experiments, we assume that the glass is relatively thin and
do not search over all squares with color ramps but choose
the closest deflection. This is not a theoretical limitation,
but suggests an area of future work, e.g., in pattern design.

Note that we photograph the background pattern only
once in advance for calibration and to provide the known
background pattern. After calibration, for each glass exam-
ple, only one image is needed to reconstruct its surface.

We show a variety of reconstructions in Fig. 6. The
deflection maps are quite noisy and generally do not pro-
vide strong enough cues for either Murase’s method or the
deflection-based optimization. However, when then opti-
mizing directly against the images, the structure and relief
clearly come forward. Note in particular the intricate details
revealed in the complex flower relief.

Running time We solve for the height field by solving a
large non-linear optimization problem. The solver runs on
a workstation with two Intel Xeon X5680 (3.33GHz) pro-

cessors each with 6 cores. For the deflection-based method,
it takes about 3 hours for a height field of 600 ⇥ 400. The
image-based approach takes about 5 hours for a 600 ⇥ 400

height field.

7. Conclusion
We have presented a method for reconstructing refrac-

tive height fields imaged against a known background or
set of backgrounds from a single viewpoint. Our formu-
lation overcomes the standard height-normal ambiguity by
optimizing for the height field itself. Typical reconstruc-
tion algorithms for this problem start from a deflection map.
We develop an optimization framework, with a novel con-
tour constraint, that can recover high quality surfaces from
high quality deflection maps and demonstrate improvemen-
t over recovering normals and then integrating to get the
height field. Moreover, we show that it is possible to opti-
mize the height map by comparing a single image against
the known background. This makes it possible to recover
detailed shape even when deflection map estimation is dif-
ficult.

Our method has notable limitations and thus a number of
areas for future work. We have not shown the conditions un-
der which a unique solution exists, an area for future work.
One extreme example is the case that all deflection values
are zero, the surface can be a flat surface of any (constant)
height. The method, while more accurate than the normal-
based method, is computationally expensive. We have s-
tarted exploring optimization strategies to accelerate the re-
construction. Our image-based formulation also neglects
Fresnel attenuation as well as significant filtering due to de-
magnification of the background, both of which we hope to
model in the future. We also hope to lift dependence on
an orthographic viewer. Our experimental setup currently
requires long exposures to recover surfaces; in the single
image setting this limitation precludes recovering dynamic
surfaces such as water. In addition, we currently use a re-
peating ramp pattern within the background that can cause
ambiguities that are difficult to overcome during optimiza-
tion. We plan to explore better background patterns and
brighter sources to overcome these limitations.
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