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Figure 1: An animation sequence of a raven’s wingbeat motion during takeoff.

Abstract

In this paper we describe a physics-based method for synthesis of
bird flight animations. Our method computes a realistic set of wing-
beats that enables a bird to follow the specified trajectory. We model
the bird as an articulated skeleton with elastically deformable feath-
ers. The bird motion is created by applying joint torques and aero-
dynamic forces over time in a forward dynamics simulation. We
solve for each wingbeat motion separately by optimizing for wing-
beat parameters that create the most natural motion. The final an-
imation is constructed by concatenating a series of optimal wing-
beats. This detailed bird flight model enables us to produce flight
motions of different birds performing a variety of maneuvers in-
cluding taking off, cruising, rapidly descending, turning, and land-
ing.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.6.8 [Simulation and Model-
ing]: Types of Simulation—Animation

Keywords: computer animation, bird flight, physically based ani-
mation, forward dynamics, aerodynamics

1 Introduction

Computer animation research has produced a number of models
for the natural motion of animals. Most of this research has fo-
cused on terrestrial animals, primarily humans (e.g. [Hodgins et al.
1995]). Other studies have explored the motion of kangaroos [Raib-
ert and Hodgins 1991], snakes [Miller 1988], aquatic animals [Tu
and Terzopoulos 1994], and even extinct and imaginary animals
[Sims 1994].

Perhaps equally, if not more, intriguing is the motion of animals
in flight. Birds and insects are both among the most frequently seen
wildlife in our everyday life. The flight of birds is arguably the most
graceful and expressive of all natural motions. However, modeling

aerial motion is extremely challenging. First, any locomotion in
air flows or other environments with high Reynolds numbers [Ab-
bott and Basco 1990] presents a significant simulation and control
challenge. The interaction between a bird’s wings and the air is
very complex. The forces generated by this interaction are chaotic
and hard to control. The simulations are often unstable because of
high sensitivity: the slightest change of wing position during down-
stroke can have significant effects in the result and the stability of
the bird’s flight. Furthermore, the specific musculoskeletal struc-
ture of the bird, and especially the elastic properties of the feathers,
seem to greatly affect not only a bird’s wingbeat pattern but also
whether the bird can fly at all.

This paper addresses some of these challenges. We focus on
the problem of bird flight synthesis. Specifically, we describe al-
gorithms for dynamic simulation of a bird following a given flight
trajectory. Our framework can generate flight motions for differ-
ent birds performing various flight maneuvers including taking off,
cruising, rapidly descending, turning, and landing. These motions
could potentially be used in animation or film productions, as well
as an analysis tool for designing optimal flight controllers.

The rest of the paper describes our approach in more detail. In
Section 2, we discuss related work. Section 3 gives a short overview
of our flight synthesis approach. Subsequent sections describe var-
ious aspects of our algorithms in more detail. In Section 7, we
describe a collection of example animations generated by our sys-
tem. Section 8 summarizes our contributions and outlines possible
future research directions.

2 Related work

In addition to a large body of research concerned with model-
ing realistic human motion, a number of researchers have focused
on modeling other animals. Miller [1988] modeled locomotion
of snakes and worms using mass-spring systems. Grzeszczuk et
al. used a multi-level learning technique to optimize and choose
appropriate actuators and controllers of locomotion for snakes and
fish [Tu and Terzopoulos 1994; Grzeszczuk and Terzopoulos 1995].

Birds have received somewhat limited attention within the com-
puter graphics community. Haumann and Hodgins [1992] used a
physics-based model to generate the hovering flight of humming-
birds. Reynolds [1987] modeled the group behavior of birds by
modeling flocks as particle systems. Ramakrishnananda and Wong
[1999] utilized simplified aerodynamics and manually tuned con-
trollers for bird flight animation. They used forward kinematics in
their simulation, omitted the elbow joints, and simplified the joint
movements for the wrists. In order to obtain more realistic flight be-
haviors, we use forward dynamics and skeletal structures that fully
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reflect the structures and movements of a bird’s wings. In addition,
we use simulations and optimizations to automatically determine
control parameters.

Full dynamics simulations, together with robot controllers, have
been successfully used for synthesis of human motion [Hodgins
and Pollard 1997]. Recently Faloutsos et al. [2001] describe a
controller-based approach to human motion synthesis where they
assume the availability of controllers. The transition strategy be-
tween the controllers is learned from a number of simulation tri-
als. Unfortunately, designing controllers for flight presents a greater
challenge because of instability and the complexity of the dynamic
model. In this paper we draw many ideas from the controller syn-
thesis research. However, we sidestep the problem of controller
design by focusing on the offline motion synthesis problem where
we solve for each optimal wingbeat separately.

Our wingbeat optimization approach is motivated by the work of
Grzeszczuk and Terzopoulos [1995]. They parameterized fish and
snake movement with a small set of parameters and used global op-
timization methods to determine the optimal parameters that would
enable the animal to move forward and turn in different directions.
Controllers for turning by an arbitrary amount are subsequently
constructed by interpolation of the optimized parameters. Unfor-
tunately, this approach does not directly apply to bird flight, mainly
owing to an important distinction between bird flight and marine
locomotion: the bird must constantly seek to obtain the optimal
lift/drag ratio to counteract gravity. Thus, the speed is much more
important in the case of bird flight – the controller strategy for the
same flight maneuver performed at different speeds can be drasti-
cally different. Consequently, the space of controllers or wingbeats
for bird flight is significantly larger compared to systems with lower
Reynolds number such as fish swimming in water. For the same rea-
son the interpolation of distinctively different controllers also does
not apply to the highly nonlinear space of bird-flight controllers.

Accurate modeling of the aerodynamics within the flight simu-
lation is crucial for obtaining natural-looking animation. Computa-
tional fluid dynamics (CFD) algorithms are the best choice in terms
of accuracy. Unfortunately, the CFD computations are too compu-
tationally intensive for the controller optimization framework. As
a result, we turned to simpler and commonly used aerodynamics
equations. Wejchert et al. [1991] used simplified aerodynamics for
the design and control of animation of objects in fluid and airflow.
With wind tunnel experiments and flow visualizations, researchers
in biology and zoology have studied many complex aerodynamics
phenomena that occur during the flapping flight of birds and insects
(e.g. [Norberg 1990; Tobalske and Dial 1996; Spedding 1992]).
Our flight model draws greatly from this large body of work.

3 Overview

The input to our system consists of a dynamic bird model and a
flight path trajectory. The bird model includes the skeletal struc-
ture, mass distribution, and wing feather specification including the
parameters describing the feathers’ aerodynamic properties. We
have created a number of such models from the data available in the
biomechanics literature. We group all degrees of freedom (DOFs)
for the bird into a vector q. This vector includes the bird’s global ro-
tation and translation, as well as all controllable joints of the bird’s
skeleton. We define the simulation state S to be q and its derivative,
i.e.

S =

[

q
q̇

]

The desired path trajectory p(s) is represented as a 3D spline pa-
rameterized by its arc length s with corresponding desired velocity
v(s) along the path. By adjusting the path and the velocities, the

animator can generate a large variety of aerial maneuvers. For ex-
ample, Figure 1 shows a synthesized wingbeat during the takeoff
motion of a raven.

Our flight synthesis algorithm splits the entire motion into a se-
quence of wingbeats. During each wingbeat, a bird flaps its wings
from a neutral position upward, then downward, and then upward to
the neutral position again. Our algorithm finds values for the wing-
beat parameters u that enable the bird to follow the specified path
in a most natural way. These parameters determine the desired state
patterns q∗(u; t) for the controllable DOFs during the wingbeat cy-
cle. The bird’s motion is controlled by a proportional-derivative
(PD) controller that generates joint torques τ(u) that bring each of
the controllable DOFs q towards its desired state q∗. The torque for
each of the DOFs qi is determined by

τi(u) = k1
(

q∗i (u; t)−qi(t)
)

+ k2
(

q̇∗i (u; t)− q̇i(t)
)

The two constants k1 and k2 depend on the characteristics of indi-
vidual birds and individual joints. In addition to torques, the wing-
beat motion is also affected by external forces F. These forces in-
clude gravity and all the aerodynamics forces. The entire dynamic
system can be described by an ordinary differential equation

q̈ = f (q, q̇,F,τ(u))

Then, with the initial state q0 and q̇0 we can describe the simulation
state at time t as

S(q0, q̇0,F,τ(u), t) =

[

q(t)
q̇(t)

]

(1)

Using several metrics, the wingbeat objective function
E(S(q0, q̇0,F,τ(u), t),p(s),v(s)) evaluates the quality of the sim-
ulation sequence. The wingbeat optimization finds the optimal set
of wingbeat parameters u∗ that minimizes the objective function E,
i.e.

u∗ = argmin
u

E(S(q0, q̇0,F,τ(u), t),p(s),v(s))

Once we have found the optimal values for u, we can use the sim-
ulation function (in equation (1)) to determine the position and ve-
locity of the bird until the end of the wingbeat. We continue the
process of flight synthesis by solving for the subsequent wingbeats
until we reach the end of the path trajectory.

4 Bird dynamics

We model the bird as a hierarchy of articulated links. Each bird
has 11 articulated links, 21 joint DOFs, and additional DOFs for
flexible feathers. The skeletal structure and controllable DOFs are
described in Figure 2.

To model a feathered flexible wing, each of the flight feathers is
attached to the wing by a 2-DOF joint whose joint angles are com-
pletely determined by the shoulder, elbow, and wrist joints in a way
that resembles that of the flight feathers of real birds. We model
feathers using nonlinear angular springs. We divide the vanes of
each feather into several consecutive polygonal segments. Each
segment has an angular spring at its root, and the segment can bend
around the spring axis. Furthermore, primary flight feathers rotate
around their shafts as they move through the air because of their
vane asymmetry (Figure 3). This rotation or twist allows air to flow
through the gaps between the primary feathers and helps to reduce
the drag during upstroke [Norberg 1990]. Since the negligible mass
of a feather would result in stiff ODEs and consequently highly
unstable simulations, we ignore the mass of feathers and model
them as completely damped oscillators using a first order differen-
tial equation, where the bend angle increases asymptotically with
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Figure 2: The bird skeleton. Note that in order to model both twist
and bend movement, the forearms and the tail are each divided into
two links. The actuated joints are shoulder × 2, elbow bend × 2,
forearm twist × 2, wrist bend × 2, tail bend, tail twist, and tail
spread. The shoulder joint has 3 DOFs and the other joints each has
1 DOF. The trunk has 6 DOFs representing its global position and
orientation.

bend springs

twist spring

aerodynamic
forces 

Figure 3: Left: Angular springs on a feather. Right: Because
of vane asymmetry, air pressure may create different amounts of
forces on both sides of the shaft and cause the feather to rotate
around its shaft.

torque. To avoid the concentration of mass at the front edge of the
wing because of the massless feathers, links with feathers are ex-
tended in the direction of feather growth for a more accurate mass
distribution.

4.1 Wingbeat parameterization

In order to represent the desired DOF patterns q∗(t) for a wing-
beat, we use a set of wingbeat parameters u. The size of u defines
the dimensionality of the search space for the optimization and di-
rectly impacts the performance of the optimization process. It is,
therefore, important that we specify each wingbeat using as few
parameters as possible while still giving the bird enough maneuver-
ability. The parameters are shown in Table 1. The superscripts u
and d indicate upstroke and downstroke parameters. Most of these
parameters are replicated for the left and right wings. For simplic-
ity, we do not list them here separately. The dihedral and sweep
angles are defined in Figure 4.

These parameters are used to determine the composite func-
tions gk which in turn determine q∗:

q∗i (t) = qi +(qi−qi)gk(u
d
µ(i),u

u
µ(i),φ(t))

where qi and qi are the maximum and minimum allowed values for
DOF i (i.e. the joint limits), and φ is the phase of the wingbeat cycle.

Parameter Description
ud

1 , uu
1 arm dihedral angles

ud
2 , uu

2 arm sweep angle
ud

3 , uu
3 arm twist angles

ud
4 , uu

4 forearm twist angles
ud

5 , uu
5 wing spread extents

ud
6 , uu

6 tail bend angles
u7 tail twist angle
u8 tail spread angle
uT duration of the wingbeat

Table 1: Wingbeat parameters.

dihedral angle

sweep angle

front view top view

Figure 4: Arm dihedral and sweep angles.

Each wingbeat starts with the downstroke, i.e. , φ = 0 is the begin-
ning of the downstroke, and φ = 2π is the end of the upstroke. The
function µ(i) determines the mapping between DOFs and wingbeat
parameters. DOF i is determined by the parameters ud

µ(i) and uu
µ(i).

The composite functions gk are

g1(u
d
j ,u

u
j ,φ) = (uu

j −ud
j )

1+ cosφ
2

+ud
j

g2(u
d
j ,u

u
j ,φ) =

{

ud
j 0≤ φ < π

(uu
j −ud

j )
1−cos(2φ)

2 +ud
j π ≤ φ < 2π

Figure 5(a) shows curves generated by these two composite func-
tions.

Based on observations made in the biomechanics literature, we
use g1 for upper arm dihedral and tail bend. We use g2 for the
arm sweep, arm and forearm twists, and wing spread extends. We
provide the rationale for the specific choice of composite functions
in Appendix A.

For DOF i with constant desired state such as tail twist and tail
spread, the desired state is

q∗i = qi +(qi−qi)uµ(i)

The mapping µ(i) is straightforward for most DOFs, with the
exception of the wrist bend and elbow bend DOFs. These DOFs are
both determined by the wing spread parameters ud

5 and uu
5 because

of a bird’s musculoskeletal constraints. The wing linkage allows the
forearm and the hand to fold and unfold synchronously [Norberg
1990]. As the wing folds, it also causes the forearm to rotate so
that the hand is depressed downward [King and McLelland 1985].
We linearly decrease the bounds for the arm twist depending on
the wing spread parameters to achieve this. We could avoid this
inelegance by modeling the complete linkage system, but doing so
would make the skeletal model unnecessarily complex and hinder
the simulation performance.

4.2 Phase transformation

As previously defined, the functions g1 and g2 generate wingbeats
with equal downstroke and upstroke durations. To allow variability
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Figure 5: (a) Two curves generated by the composite functions.
(b) Shows phase transformation function with different downstroke
fraction uα .

in these durations, we introduce two more parameters uα and uβ
that represent the fractions of time that the downstroke takes up
the wingbeat duration and a phase transformation function h(φ)
(Figure 5(b)) which satisfies the following conditions:

h(0) = 0, h(2u
{α,β}π) = π, h(2π) = 2π, ḣ(0) = ḣ(2π) = 1

We then use φ ′ = h(φ) instead of φ in g1 and g2. We use uα and uβ
in g1 and g2 respectively, and the resulting wingbeat has a down-
stroke/upstroke ratio of uα

1−uα
. Using uβ in addition to uα produces

a wider variety of wingbeats and also enables the optimization to
find a better timing between different DOFs. In order to keep DOFs
synchronized, we offset the phase of any q∗i generated using g2 so
that its midpoints of upstroke and downstroke coincide with those
that belong to DOFs generated using g1.

4.3 Wingbeat blending

Functions g1 and g2 are intentionally designed to be cyclic in order
to easily model repetitive wingbeats. Unfortunately, when compos-
ing two different consecutive wingbeats, there are invariably C0 and
C1 discontinuities at the time of transition. These discontinuities
will result in drastic fluctuations of the torques from the PD con-
troller. We deal with these discontinuities by blending the desired
state patterns near the transition point. In order to decouple the flap-
ping amplitudes between adjacent wingbeats, we have found that it
is better if each wingbeat starts and ends at the middle of the up-
stroke because that is when the wings are usually at their neutral
dihedral angles. In other words, the wingbeat phase starts and ends
at 2(uα + 1−uα

2 )π .
Let tT denote the time at which the wingbeat transition occurs

(i.e. when the first wingbeat ends and the second wingbeat begins).
We blend the wingbeats from time ts = tT − tb to te = tT + tb. As
seen in Figure 6, we first extend q∗(t) from both wingbeats into the
neighboring regions by duplicating them, and then blend them as
in [Lee and Kim 1995]. Note that unlike in [Lee and Kim 1995]
where they directly manipulated the final animation, our blended
curves represent the desired values for the DOFs and not the sim-
ulation results. We feed the blended desired state patterns to the
PD controller to generate the torques used in the final simulation.
Because the end of the first wingbeat is changed by the blending,
we back up and start the simulation from ts when we optimize the
second wingbeat.

4.4 Simplified aerodynamics

Currently, the only external force modeled in our system besides
gravity is the aerodynamics force. The lift and drag model used in
our system is as follows. Given the velocity of air v relative to a

q

time

blended 
curve

1st wing beat


2nd wing beat


ts tetT

*

Figure 6: Wingbeat blending. The solid blue curves are the original
curves. The dotted blue curves are the duplicate of the original
curves to extend the them beyond the transition time tT . The thick
red curve is the blended result.

ap
as

Figure 7: Wing areas: ap is the wing area formed by the primaries,
and as is the wing area formed by the secondaries.

surface with normal n, we decompose the velocity into the normal
and tangential components vn and vt with respect to the surface.
The angle of attack θ is

θ = tan−1
(

vn ·n
‖vt‖

)

By definition, the direction d of drag and the direction l of lift are

d =
v
‖v‖

, l =
d×n
‖d×n‖

×d

With lift and drag coefficients cl(θ) and cd(θ) , we compute lift
and drag for every segment on each feather using the area of the
segment and the angle of attack the air has on the segment. The
measured coefficients for bird wings are only available for limited
range of angle of attack (see, for example, [Withers 1981]). More
extreme angles of attack such as those that would appear during
takeoff are usually outside of this range. We use synthesized func-
tions to produce lift and drag coefficients at any particular angle
of attack while maintaining their characteristics within the range
where measured data are available. Simply summing up the lift
and drag forces thus derived to obtain the forces for the wing will
not give a good approximation because the overlap of the feathers
is ignored. We therefore scale the segment area by si = ap/∑i ai
for each primary feather segment i and by s j = as/∑ j a j for each
secondary feather segment j, where ap and as are the wing areas
formed by the primaries and the secondaries respectively and ai
and a j are the unscaled segment areas. We approximate ap and as
by connecting the roots and tips of adjacent feathers and summing
up the polygonal area (Figure 7).
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Figure 8: Lift and drag coefficients: The lift and drag coefficients
are determined by the characteristic points xi and yi respectively.

The lift and drag forces for each vane segment i are

fi
l =

1
2

cl(θ)ρsiai‖v‖
2l

fi
d =

1
2

cd(θ)ρsiai‖v‖
2d

where ρ is the air density. Figure 8 shows the plot of the lift and
drag coefficients used in our system. For body link i, the external
force and torque due to aerodynamic interaction are

∑
j

f j
l + f j

d and ∑
j

x j,i× (f j
l + f j

d)

for each vane segment j of the feathers attached to link i, where x j,i
is the vector from the i’s center of mass to j’s area center.

5 Wingbeat optimization

After we have obtained a sequence of simulation states by apply-
ing the wingbeat defined by the set u of wingbeat parameters, we
use the objective function E to evaluate the goodness of motion.
E is the weighted sum of various flight metrics that fall into two
groups. The first group evaluates how close the bird follows the
path with the specified velocity without regard to the smoothness
of the motion or energy consumption. These metrics alone cannot
ensure that the motion looks natural. The second group of metrics
measure the gracefulness of the motion. These two groups of met-
rics work together to ensure that the optimal wingbeat achieves the
goal gracefully.

5.1 Objective function

Suppose the simulation for the wingbeat is carried out from time
t0 to the end of the wingbeat t1. Let qp denote the position of the
gravity center of the bird’s trunk and the quaternion qr denote the
trunk’s orientation. Let p(si) denote the point on p that is closest
to qp(ti). The first group of metrics evaluate how well the bird is
following the path by measuring the deviation of the final position,
velocity, and orientation with respect to the path:

Ep = ‖qp(t1)−p(s1)‖
2

Ev = ‖q̇p(t1)−v(s1)‖
2

Er = ψ2(qr(t1),q
∗
r (s1))

where ψ(qa,qb) is the absolute value of the rotation angle from qa
to qb, and q∗r is the desired orientation. See Appendix B for the
details on how we determine q∗r .

The first metric from the second group penalizes non-smooth
change of orientation and larger than necessary angular velocity at
any instance in time. This term ensures that the bird remains as
stable as possible over the entire duration of the wingbeat:

Eω = R2
(

γω

∫

‖ω‖dt +(1− γω )max
t

(‖ω‖)∆t−∆ψ
)

where ω is the angular velocity of the trunk, ∆t = t1− t0,
∆ψ = ψ(qr(t0),q

∗
r (s1)), and R is the ramp function defined as

R(x) =

{

0 x < 0
x otherwise (2)

The integration term measures the overall change of orientation
within the wingbeat duration. We also measure the maximum angu-
lar velocity to discourage abrupt changes in orientation. The con-
stant γω controls the relative importance of the integration and the
maximum value of the angular velocity.

Grzeszczuk and Terzopoulos [1995] used a metric that penalizes
controller actuation amplitudes and their variation for synthesis of
fish swimming controllers. We found this particular metric insuffi-
cient for bird flight. Although this metric may work well for wing-
beats – such as those for cruising and soaring – that consume less
energy, it fights with the other metrics (Ep and Ev in particular) for
wingbeats – such as those for takeoff – that require a huge amount
of energy. In order to devise a more general metric of energy con-
sumption, we turn to the flight biomechanics literature.

It has been observed that the twist of the forearm which rotates
the hand and hence the primary feathers undergoes a relaxed move-
ment during the upstroke [Burton 1990]. Minimizing the torque
for the twist of the forearms only during the upstroke gives natu-
ral looking results without overrestricting the overall torque from
the controller. Intuitively, the energy spent during downstroke is
mainly governed by the bird’s need to maintain altitude. During
the upstroke the bird has significantly more freedom to move in
different ways. Consequently, we use this metric to minimize the
excessive torque usage during upstroke:

Eu =
1

m2 ∑
j∈V

(

γu
1

uα ∆t

∫

τ2
j υ(t)dt +(1− γu)max

t
(τ2

j υ(t))
)

where V is the set of the two elbow twist DOFs, m is the bird’s
mass, and υ(t) is 1 during upstroke and 0 otherwise. We also mea-
sure the maximum torque during upstroke to suppress sudden actu-
ation in a short period time, which will not be accounted for in the
integration term.

During the simulation, the bird can at times move its wings back-
wards through the air. Such motion would disturb, and possibly
damage, the flight feathers of a real bird. In order to avoid “fluff-
ing the feathers” during flight, we devise an additional metric. Let
b j denote the speed feather j travels backward through the air. We
define “backward” for a feather to be the shaft direction of its end
vane segment, and b j has a positive value when feather j is mov-
ing backward and 0 if not. The following metric penalizes such
movement:

E f =
1
∆t

∫

max
j∈F

(b2
j(t))dt

where F is the set of flight feathers. The objective function is
therefore the weighted sum

E = wpEp +wvEv +wrEr +wω Eω +wuEu +w f E f
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5.2 Optimization process

We use a standard simulated annealing process [Kirkpatrick et al.
1983] to optimize the wingbeat parameters. At each iteration, we
generate a new set of wingbeat parameters by randomly picking
a parameter from u and then offsetting it by a random amount to
obtain a new set of parameters. We then run the simulation using
the new wingbeat and use E to evaluate the goodness of the motion.
Each wingbeat requires 1000 iterations. We use a geometric cooling
schedule and the annealing temperature is reduced by 10% every
100 iterations.

6 Putting it all together

When the bird’s position diverges from the path, v(s) may only al-
low the bird to travel in parallel with p(s). Returning to the path
and maintaining the desired velocity become conflicting goals. We
therefore define a merging path p′(s) with new velocity v′(s) that
allows the bird to gradually return to the original path. The new ve-
locities still have the same magnitude but have directions tangential
to the new path. We then use p′(s) and v′(s) instead of p(s) and
v(s) in the objective function.

Define τb(u0,u1) to be the joint torques the PD controller gener-
ates from blending the two sequential wingbeats. For simplicity, we
also define τb(null,u1) = τ(u1). The entire flight synthesis process
can be described as a set of iterated stages:

q0← p(0)
q̇0← v(0)
u0← null
repeat

determine p′(s) and v′(s) from q0
u1← argmin

u
E(S(q0, q̇0,F,τb(u0,u), t),p′(s),v′(s))

t← uT − tb
[q0, q̇0]

T ← S(q0, q̇0,F,τb(u0,u1), t)
u0← u1

until q0 has reached the end of p(s)

The full animation of a bird’s flight is a result of dynamic simu-
lation of all wingbeats performed sequentially.

7 Results

To demonstrate the capability of our system, we create three bird
models of different dimensions and weights, approximating an ea-
gle, raven and a sparrow. We also create several paths that require
the birds to do different maneuvers. Figure 9 shows the animation
sequences for these three birds.

We test our method by requiring each bird to follow a full flight
path starting with a takeoff and finishing with landing. At takeoff,
the birds start at the small velocity generated by a jump and gradu-
ally build up the speed trying to catch up to the path. The extreme
bending of feathers is apparent during takeoff, especially for the ea-
gle’s long feathers. In order to execute a turn, a bird compensates
for inertia by tilting its body and using an asymmetric wingbeat.
When landing, a bird uses the air drag of its wings and/or flaps
against the direction of movement to slow down.

Because of the different mass, size, and skeletal structure, the
wingbeats of these birds are different. For example, during take-
off, the raven folds its wings inwards at upstroke, while the eagle
sweeps its wings forward. The forward sweep of the eagle also re-
sembles the wingbeat pattern of a real bird of similar dimensions,
as shown in Figure 10.

eagle raven sparrow
timestep 0.001s 0.0007s 0.00025s
flight time 6.7s 5.2s 3.8s
optimization
time

218min 232min 324min

mass (kg) 3.7 0.5 0.025
k1 20∼1000 2∼100 0.01∼0.5
k2 0.02∼2 2e-3∼0.2 1e-5∼1e-3
x0 (−90, −0.5) (−90, −0.5) (−90, −1)
x1 (−10, −1.26) (−10, −0.8) (−15, −2.4)
x2 (−5, 0) (−5, 0) (−5, 0)
x3 (15, 1.8) (15, 1.6) (15, 3.0)
x4 (90, 0.5) (90, 0.5) (90, 1)
y0 (−90, 2) (−90, 2) (−90, 1)
y1 (0, 0.02) (0, 0.02) (0, 0.01)
y2 (90, 2) (90, 2) (90, 1)
wp 1000 1000 10000
wv 10 10 100
wr 300 300 300
wω 2 2 2
wu 1 1 1
w f 100 100 100

For Eω and Eu, γω = 0.5 and γu = 0.1.

Table 2: Some values used in and resulting from the simulations
and optimizations. Note that the flight and optimization times refer
to the times for the full flight paths. The machine used is a 2.8 GHz
Pentium 4 PC. For each bird, the same metric weight values are
used for all paths.

We can also apply environment forces such as a gust of wind by
including the effect of directional wind in the aerodynamic model.
In the simulation, the eagle first gets blown off the path, and then
readjusts its wingbeats to counteract the wind force. When the wind
disappears, it returns to its normal flight pattern.

The simulated annealing process was able to find the sequence of
wingbeats on each of the full flight paths from start to finish in one
single run. However, every bird has its physical limitations and if
the specified turn is too sharp, or the climbing angle is too steep, the
bird may lose substantial speed and altitude while trying to follow
the path or completely fail to take flight. When the bird diverges
too far away from the path, the wingbeat motion no longer looks
natural because the term wpEp overshadows the other terms in the
objective function.

We use a freely available library DynaMechs [McMillan et al.
1995] for the forward dynamics simulation. We show the system
performance and some of the important parameter values we use in
Table 2.

8 Discussion and future work

The main contribution of this paper is a general algorithm for syn-
thesis of dynamic bird flight simulations. Because our framework
is based on a realistic bird model (we use appropriate physical,
biomechanic, and aerodynamic properties), it naturally generalizes
to birds of various shapes and sizes performing a variety of aerial
maneuvers.

Along the way to achieving our goal, we showed that with the
compact parameterization of wingbeats and a proper metric to cap-
ture the natural aspects of flight motion, global optimization meth-
ods can successfully explore the space for a set of natural wingbeat
parameters. We showed that modeling the twist of primary feathers
(which reduces drag during upstroke) and accounting for feather
overlap when computing wing area are important for successful
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Figure 9: Top and middle: A raven and a sparrow each following a flight trajectory indicated with a white line. The color lines represent the
wing tip trajectories over time. Bottom: Shows the entire flight path and animation sequence for the eagle.

Figure 10: Comparison of our simulation with a real bird of similar
dimensions.

simulation of flight. We also showed that natural motion can be
produced by simultaneously minimizing the ruffling of feathers and
the energy of the upstroke motion. We hope that this novel metric
will motivate further research in the analysis of bird flight.

Unfortunately, detailed modeling of the bird flight model comes
with complexity costs. In our design, we tried to simplify the model
as much as possible without losing the quality of the resulting mo-
tion and general applicability to various bird models and aerial ma-
neuvers. For example, we found that we could produce natural

flight motion even if turbulence was left out of the aerodynamics
model. At the same time, the flexibility of feathers was important.
In order to make the optimization problem fast and stable, we had to
make further simplifications to the model. For example, the feather
elasticity was modeled as a first-order ODE unlike the rest of the
bird. Despite all simplifications, our model is still quite complex,
and further research needs to be conducted to explore additional
abstractions.

We found that in the process of defining a new bird, in addition
to specifying a skeleton, the animator needs to also define the spe-
cific aerodynamic properties of the bird’s feathers. Unfortunately,
the measurements from the literature are incomplete even in the few
cases where they exist. Since our aerodynamic model is a simplifi-
cation of reality, it is also not clear how to determine these param-
eters accurately. Currently in our framework this process is not too
far removed from a simple trial and error process. In the future,
these parameters could also be determined by optimization.

Behaviors such as bounding flight and soaring are currently
missing from our animation results. Although we can generate such
behaviors by manually enforcing zero flapping amplitude, a better
approach would be to take the bird’s metabolic rate and energy con-
sumption into account when we search for optimal wingbeats.

In this paper, we have described an offline method for bird
flight synthesis. Although synthesis of a bird flight takes a num-
ber of hours to complete, our framework could be used to popu-
late the space of all possible flight movements. We are investigat-
ing ways to automatically determine flight controllers from these
flight movements. Such controllers should determine an optimal
wingbeat from the pre-generated flight movements without repeat-
ing the time-consuming optimizations (e.g. by interpolating neigh-
boring wingbeats) and could be useful for realtime synthesis of bird
flight and detailed flocking behaviors.
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A Choice of composite functions

During takeoff or at low flying speeds, the bird uses its tail to help
generate lift [Norberg 1990]. The motion of the tail should be syn-
chronous with the wingbeats so that the bird can balance itself.
Therefore, arm dihedral and tail bend both use the sinusoidal com-
posite function g1.

During downstroke, the bird holds its forearms fixed with respect
to the arms. During upstroke, the bird quickly retracts its wings and
rotates forearms in order to reduce the downward drag caused by
the primary feathers. It then quickly extends the wings again near
the end of the upstroke to prepare for the next downstroke [Poore
et al. 1997]. We therefore use g2 for arm and forearm twists and
wing spread. We also use g2 for arm sweep since the sweep joint
also affects wing spread.

B Updating desired orientations

While desired position and velocity are obtained directly from the
path specification, the desired orientation for the bird at the end
of the wingbeat q∗r is harder to determine. We use the heuristic
that q∗r is such that the bird’s flapping generates acceleration in the
direction of the desired acceleration a∗. We also assume that the
birds are designed to generate acceleration in the up direction with
respect to the bird’s trunk.

The desired acceleration a∗ is the sum of the centrifugal accel-
eration ac, tangential deceleration at , and the negation of gravity
−g. Note that we disregard (forward) tangential acceleration.

With the point p(s1) on p that is closest to the end position of the
bird qp(t1), we compute ac using

ac =
m‖q̇p(t1)‖

2

ρ(s1)
n(s1)

where ρ(s1) is the radius of curvature of p at p(s1) and n(s1) the
principal normal to p. We approximate at using

at =
−R(‖q̇p(t0)‖−‖q̇p(t1)‖)

t1− t0

v(s1)

‖v(s1)‖

where R is the ramp function defined in equation (2). We further
require that, with q∗r , the horizontal component of the direction the
bird is facing is the same as the horizontal component of the desired
airspeed.

Note that although computing orientation this way works well
for us in most cases, it is a very rough approximation and not well
defined on a path with (nearly) vertical segments.
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