
Interactive Image-Based Exploded View Diagrams

Wilmot Li
University of Washington

Maneesh Agrawala
Microsoft Research

David Salesin
Microsoft Research

University of Washington

Figure 1: A static 2D exploded view diagram of a master cylinder (left). We construct an interactive version of the
diagram using our system. These three frames show the user interactively expanding a portion of the object to examine
it in more detail (right).

Abstract
We present a system for creating interactive exploded
view diagrams using 2D images as input. This image-
based approach enables us to directly support arbitrary
rendering styles, eliminates the need for building 3D
models, and allows us to leverage the abundance of ex-
isting static diagrams of complex objects. We have devel-
oped a set of semi-automatic authoring tools for quickly
creating layered diagrams that allow the user to spec-
ify how the parts of an object expand, collapse, and oc-
clude one another. We also present a viewing system that
lets users dynamically filter the information presented in
the diagram by directly expanding and collapsing the ex-
ploded view and searching for individual parts. Our re-
sults demonstrate that a simple 2.5D diagram represen-
tation is powerful enough to enable a useful set of inter-
actions and that, with the right authoring tools, effective
interactive diagrams in this format can be created from
existing static illustrations with a small amount of effort.

Key words: Interactive diagrams, Image-based render-
ing, Exploded views

1 Introduction
Diagrams are essential for communicating the structure
of complex 3D objects that are composed of many sub-
parts, such as mechanical assemblies, architectural envi-
ronments and biological organisms [5, 8, 15, 19, 25, 26].
To elucidate the composite structure of such objects, il-
lustrators commonly use diagrammatic techniques such
as exploded views and cutaways that reduce or eliminate

occlusion and expose internal parts. In this work, we fo-
cus on exploded view diagrams, which simultaneously
convey the global structure of the depicted object, the de-
tails of individual components, and the local relationships
among them.

However, because exploded views are usually designed
as static illustrations for print publications, they often suf-
fer from two important drawbacks:
• Ambiguous spatial relationships. A static diagram

can only show a fixed set of spatial relationships be-
tween parts. For complex objects, it may not be clear
from a static exploded view how all the parts fit to-
gether, interact with, and constrain one another.

• Visual clutter. Static diagrams are usually designed
to include all the information the viewer might need
about the object. As a result, they are often visually
cluttered, making it difficult to extract specific in-
formation about a particular part or subset of parts
without carefully perusing the entire illustration.

In contrast, exploded view diagrams viewed through
a computer can alleviate both of these problems by al-
lowing viewers to interactively manipulate the parts and
thereby dynamically filter the information presented in
the diagram. For example, a viewer might interactively
expand and collapse only the wheel assembly of a car
diagram to better understand how the parts of that assem-
bly interact with one another. On the other hand, a static,
general-purpose car diagram would have to show all of
the parts in an exploded state, making it difficult to focus
on the wheel assembly. In general, we believe that inter-



active diagrams can be far more clear, informative, and
compelling than their static counterparts.

In this paper, we present a novel framework for cre-
ating and viewing interactive exploded view diagrams of
complex mechanical assemblies. As an example, Figure 1
shows a dynamic illustration that was authored and ren-
dered using our system. Rather than using 3D models as
input, our approach is to construct dynamic illustrations
from 2D images, resulting in a layered 2.5D diagram rep-
resentation. Although the lack of explicit 3D information
puts some limits on the viewing experience (e.g., we can-
not directly support arbitrary changes in viewpoint), this
image-based strategy has several key benefits: it makes it
easy to support arbitrary rendering styles (we just have
to find or create pictures of each part of the object in the
desired style); it obviates the need for 3D models, which
are in general much more difficult to acquire or build than
images; and, finally, using 2D images allows us to lever-
age the abundance of existing static exploded views com-
monly found in textbooks, repair manuals, and other edu-
cational material. As a result, we believe our image-based
approach makes it possible to create effective interactive
diagrams far more easily than with a 3D method.

The contributions of our work fall into two categories:

Semi-automatic authoring tools. The primary challenge
in turning a 2D image into an interactive exploded view
diagram is specifying how parts interact with one another.
We provide a suite of semi-automatic tools for constrain-
ing the motion of parts as they expand and collapse, and
for layering parts so that they properly occlude one an-
other as they move. Our tools allow users to quickly cre-
ate compelling interactive diagrams via simple, sketch-
based interactions.

Interactive viewing interface. To help viewers dynam-
ically filter the information presented in a diagram, we
provide a viewing system that supports a number of use-
ful interactions. Specifically, our interface allows the user
to directly expand and collapse the exploded view, and
search for individual parts. In our experience, these in-
teractions help the viewer understand the spatial relation-
ships between parts and the overall structure of the object.

2 Related work

Our work builds on two main areas of computer graphics
research: automated design of technical illustrations, and
2.5D layer-based diagram representations. We consider
related work in each of these areas.

Automated design of technical illustrations. A number
of researchers have investigated the problem of automati-
cally generating explanatory technical illustrations of 3D

objects. Seligmann and Feiner [23] and Rist et al. [21]
focus on generating a set of images to show the loca-
tion or physical properties of a particular part within a
3D object. Butz [7] extends these techniques to automati-
cally generate an illustrative animation rather than a set of
images. Whereas these systems are aimed at completely
automating all design decisions and thereby eliminating
the need for a human designer, our work provides semi-
automatic high-level interactive design tools that enable
human designers to quickly produce the desired illustra-
tion. In addition, the previous systems do not produce in-
teractive illustrations that allow users to directly manip-
ulate the parts of the diagram. Several groups have also
explored techniques for generating exploded views that
reveal the complete structure of complex mechanical as-
semblies [1, 10, 16, 20], architectural environments [18],
and anatomy [14, 22]. However, all of these systems rely
on complete 3D representations of the object, whereas we
use 2D images as input.

2.5D layer-based diagram representations. One of the
main features of our image-based approach is a 2.5D rep-
resentation for interactive diagrams that consists of lay-
ers of images. To facilitate the creation of diagrams in
this format, we provide a set of 2.5D authoring tools. Al-
though layer-based representations are not new in com-
puter graphics [11, 13, 24], most of this previous work
on 2.5D authoring has focused primarily on creating lay-
ered animations. Recently, Barett and Cheney introduced
tools for selecting, bending, and even deleting entire ob-
jects rather than pixels in digital photographs [2]. In con-
trast to these general-purpose systems, we focus on the
specific authoring issues involved in creating interactive
image-based exploded view diagrams.

3 Authoring
Several steps are involved in creating an interactive
image-based diagram (Figure 2). As input, our system ac-
cepts either a single image of an object with all of its con-
stituent pieces visible (i.e., in a fully exploded state), or a
set of images, one per piece. We assume that the object is
rendered using an orthographic projection, as is typical in
technical illustrations1. In the case where a single image
is used as input, the static diagram is first segmented into
parts corresponding to the constituent pieces of the de-
picted object. Next, these parts are organized into stacks
that define how parts move relative to one another as the
object is expanded and collapsed. The parts are then lay-
ered to produce the correct occlusion relationships be-
tween them. As we show later, this layering step often
involves breaking parts into smaller fragments before as-

1With perspective projections, parts may not fit together properly
when the exploded view is collapsed.



Input diagram Segmentation Stacking Fragmentation Depth assignment Annotation

Figure 2: The flowchart for converting a static 2D exploded view diagram into an interactive diagram. We segment the
input diagram into parts, organize the parts into stacks, break the parts into fragments, layer the parts and fragments
so that they properly occlude one another, and finally, add desired annotations, such as labels and guidelines.

(a) (b) (c)

(d) (e) (f)

Figure 3: The occlusion relationship between the turbine
(on top) and the bottom cover of the catalytic converter
shown in Figure 2. If the turbine and bottom cover are
each given a single depth value, the turbine incorrectly
occludes the outer lip of the cover (a–c). Instead if we
split the cover into two fragments and then layer the tur-
bine between them we can produce the proper occlusion
relationship (d–f).

signing depth values to each piece in the diagram. Finally,
the diagram can be annotated with labels and guidelines.
The remainder of this section outlines the stages of this
pipeline in greater detail.

3.1 Diagram representation
A diagram in our system consists of parts and stacks.
Each part includes an image of its corresponding compo-
nent, as well as an alpha mask that defines its bounding
silhouette. To achieve the correct impression of relative
depth between the various portions of the object, parts
are also assigned depth values that determine how they
are layered. When two or more parts interlock such that
they cannot be correctly rendered using the “painter’s al-

gorithm,” [12] it is insufficient to assign a single depth
value to each part (Figure 3). To solve this problem, parts
can be divided into fragments. By specifying the appro-
priate depth value for each fragment, we can achieve the
correct occlusion relationship between parts that overlap
in complex ways.

To enable parts to expand and collapse dynamically,
they are organized into stacks that define how the parts
are allowed to move in relation to one another. More
precisely, a stack is an ordered sequence of parts that
share the same explosion axis (as defined by Agrawala
et al. [1]). The explosion axis is a vector that specifies the
line along which stack parts can move. We refer to the
first part in a stack as its root. In our diagrams we enforce
the restriction that each part can be a non-root member of
only one stack. However, the same part can be the root for
any number of stacks. Thus, a collection of stacks always
forms a tree, as shown in Figure 4.

For each of its constituent parts, a stack stores three
parameters. The initial position specifies the position of
a part in its fully collapsed state with respect to its prede-
cessor, the current offset keeps track of the part’s current
displacement from its initial position, and the maximum
offset indicates how far a part can possibly move away
from the preceding part in the stack. Given these stack
parameters, the position of each part depends only on the
position of its predecessor.

3.2 Creating parts
To help the user segment a single static illustration into
parts, the authoring system includes an Intelligent Scis-
sors (I-Scissors) tool [17] that makes it easy to cut out
the individual components of the depicted object. The
user simply loads the input image into the interface and
then oversketches the appropriate part boundaries using
I-scissors. In some cases, a component that is partially oc-
cluded in the input illustration might have holes in it that



Figure 4: The stack hierarchy for the master cylinder. The
arrows indicate the ordering of parts within each stack.
The stack parameters consist of the initial position of each
part with respect to its predecessor and the maximum off-
set, which is the furthest distance a part can move with
respect to its predecessor (inset).

need to be filled. This can either be done manually us-
ing Adobe Photoshop, or via automatic hole-filling tech-
niques [4, 9]2.

3.3 Creating stacks
After the parts have been created, they can be organized
into stacks via a simple, sketch-based interaction (Fig-
ure 5). To create a new stack, the user connects the appro-
priate set of parts by drawing a free-form stroke. These
components are then organized into a stack, preserving
the part order defined by the stroke. The system assumes
that the specified parts are currently in their fully ex-
ploded configuration and then infers an explosion axis,
initial positions, and maximum offsets for the new stack
that are consistent with this layout.

To determine the explosion axis, the system connects
the bounding box centers of the first and last stack com-
ponents with a straight line. The initial position for each
part is set by default to be a small offset from its prede-
cessor along the explosion axis. Since the parts start out
in their fully exploded layout, the system sets the maxi-
mum offset for each part to be the distance from the part’s
initial position to its current, fully exploded position.

The user can manually tweak the stack parameters
once the new stack is created via a number of simple
direct-manipulation operations. To modify the explosion
axis, the user drags out a line anchored at the stack’s root,
and then adjusts this vector to the desired direction. The

2Currently, our system does not include automatic hole-filling tools.

Figure 5: Users draw a free-form stroke to organize a set
of parts into a stack (left). The stroke directly indicates
the order of the parts in the stack as well as the explosion
axis (middle). Users can interactively adjust the explosion
axis if necessary (right).

stack’s axis updates interactively during this operation so
that the user can easily see how the parts line up. To
change a part’s initial position and maximum offset, the
user switches to a “stack manipulation” mode, and then
drags the component to its appropriate fully collapsed and
expanded positions.

3.4 Layering
After all of the stacks have been created, parts are frag-
mented if necessary and then layered to produce the
correct impression of relative depth between them. The
user can manually partition a part into fragments with
I-Scissors, and then explicitly assign a depth value to
each part or fragment in the diagram. However, for ob-
jects with more than a few components, this type of man-
ual layer specification can be tedious. To reduce the au-
thoring burden, our system provides semi-automatic frag-
mentation and depth assignment tools that can be used for
a large class of interlocking parts.

Semi-automatic fragmentation
Typically when two parts interlock, one component fits
roughly inside the other (e.g., the two parts in Figure 3).
In this case, the correct layering can usually be achieved
by splitting the outer part into front and back fragments,
and then layering the inner part to pass between them. To
fragment the outer part, the user oversketches (with the
help of I-Scissors) the closed boundary of the cavity or
opening that encloses the inner piece. As shown in Fig-
ure 6, we refer to the 3D boundary of the cavity as B.
The curve that the user draws, C, is B’s projection onto
the image plane. Given C, the system computes the oc-
cluding portion of this curve, CO , where the inner part
passes behind the outer part, and then uses it to divide the
enclosing component into two fragments.



r

p

BB

1C11

2C22

back

front

OC
BB

r

v

C
1
CC C2

Image
plane
Image
plane

Figure 6: A 3D point p that passes through the open-
ing defined by B while traveling in the explosion direc-
tion r (left top). Since the fragmentation assumptions are
satisfied, the system computes the correct front and back
fragments (left bottom). In the same scene viewed from
above, we can clearly see that p passes in front of B at
C1 and behind B at C2 (right).

The system extracts CO by determining, for any 3D
point p that goes through the opening, where p passes
behind B (i.e., out of the viewer’s sight). Since parts are
constrained to move within their stacks, we consider only
points that go through the opening while traveling in the
explosion direction r (Figure 6). The system assumes that
C does not self-intersect, and that any line parallel to the
explosion axis intersects C no more than twice (Figure 7).
Given these restrictions on the shape of C and ignoring
the tangent cases, the projection of r onto the image plane
will intersect C exactly twice (at C1 and C2). Let C1 be
the first intersection point as we follow r away from the
viewer, as shown in Figure 6. By default, we assume that
p passes in front of B at C1 and behind B at C2, which
corresponds to the common case in which p enters the
opening defined by B as it moves away from the viewer.

Given this assumption, Figure 8 depicts the basic steps
for computing CO . The user must specify which end of
the explosion axis points away from the viewer. We con-

Figure 7: The cavity depicted on the left meets our con-
straints on the shape of C because a vector in the explo-
sion direction intersects the red curve at most twice. The
cavity on the right does not satisfy our assumptions be-
cause the bottom vector intersects the red curve in more
than two places.

sider the path of every point that passes through B, by
casting a ray from every pixel on C in the explosion di-
rection. If the ray intersects C again, we add the pixel cor-
responding to this second intersection point to CO . Once
we are done processing the curve, we extrude CO by ras-
terizing a line of pixels (using Bresenham’s algorithm) in
the explosion direction, starting from each pixel on the
boundary. Every pixel that we encounter is added to the
part’s front fragment, and all remaining pixels comprise
the back fragment. We stop the extrusion once we reach
the boundary of the image.

Note that our assumptions produce correct fragmenta-
tions for a whole class of enclosing cavities of different
shapes and orientations. Specifically, the assumptions do
not restrict B to lie in a plane that is orthogonal to the ex-
plosion direction. For example, the notched object shown
in Figure 9 contains a cavity with a non-planar opening.
In this situation, the system is able to compute the cor-
rect fragmentation because all of the assumptions hold.
Of course, there are situations that violate one or more
of our assumptions. In Figure 10, B is oriented such that
p emerges from behind C1 and passes in front of C2. In
this case, the user can tell the system to invert the frag-
mentation algorithm by reversing the explosion direction.

(a) (b) (c) (d) (e) (f)

Figure 8: Semi-automatic fragmentation of the bottom cover. The user sketches the boundary of the cavity C (a). The
system casts a ray from each pixel on the curve in the direction of the explosion axis pointing away from the viewer
(b). For all rays that intersect C twice, the second point of intersection is added to the occluding portion of the curve
CO (c). The system extrudes CO along the explosion axis (d). All pixels lying within the extruded region are classified
as the front fragment and the remaining pixels are classified as the back fragment (e). The system can now set the depth
value of the turbine to lie between the depth values of the front and back fragments to produce the correct occlusion
relationship (f).



r

p

BB

1C11

22C22

front

back

C

C

BB

r

v
C
1
CC C2

Image
plane
Image
plane

Figure 9: A cavity with a non-planar opening. The open-
ing defined by B has a notch in it that causes B to be
non-planar (left top). However, the system is still able to
compute the correct layering shown here (left bottom).
As long as p always passes in front of B at C1 for all
pairs of intersection points C1 and C2, the fragmentation
algorithm obtains the correct result.

This inverted computation obtains the correct fragmenta-
tion result. In practice, however, we have found our de-
fault fragmentation assumptions to be valid for a large
class of interlocking parts.

Semi-automatic depth assignment
Once all of the appropriate parts have been fragmented,
the user can ask the system to infer part layers. We use
a simple set of heuristics to compute a plausible layering
for a diagram. For non-interlocking parts within a stack,
we assume that their depth values are either strictly in-
creasing or decreasing when we consider them in stack-
ing order. For interlocking parts, we assume that the in-
ner part must be layered between the outer part’s front
and back fragments. To compute a layering, the system
first infers which parts interlock and then determines an
assignment of depth values that satisfies these rules.

To determine whether two parts interlock, we check if
the cross-section of one part (with respect to the explo-
sion direction) fits within the cross-section of the curve
that defines the cavity opening (if there is one) in the
other part. If so, then the system assumes that the first part
fits inside the second. Otherwise, the parts are assumed
not to interlock. Although this heuristic works in many
cases, there are situations in which it will fail, as shown
in Figure 11. To handle these cases, the user can manu-
ally fragment a part so that the cross-section assumption
holds for the fragment that actually fits into the enclosing
component.

In general, non-adjacent parts in the stack can overlap,
such as in Figure 12. As a result, we cannot simply propa-
gate depth values outwards from the root in a single pass.
Instead, we cast depth assignment as a constraint satisfac-
tion problem. For any two non-interlocking parts in the
same stack, we add a constraint that the part closer to the

p

rBB

2CC22
1C11

front

back

OOCC
BB
r

v

C2C
1
CC

Image
plane
Image
plane

Figure 10: In this case, B is oriented such that the frag-
mentation assumptions do not hold (left top). Without any
user intervention, the system computes an incorrect frag-
mentation (left bottom). This top-down view of the scene
clearly illustrates that B is in front of r at C1(right). To
obtain the correct result, the user can tell the system to
invert the fragmentation computation.

near end of the stack be layered in front of the other. For
two parts that do interlock, we add a constraint that the
inner part be layered in front of the back fragment and
behind the front fragment of the outer part. If the inter-
locking relationships are consistent, we solve this system
of inequality constraints using local constraint propaga-
tion techniques [6]. Otherwise, the constraint solver in-
forms the user of the inconsistency.

One feature of our authoring framework is that it grace-
fully handles cases in which one or more of our assump-
tions are violated. Since the system is organized as a
collection of semi-automatic tools, it does not force the

Figure 11: A failure case for the cross-section heuristic
that tests whether or not two parts interlock. The cross-
section of the push rod shown in red does not fit within the
cross-section of the hole in the dust boot shown in blue
(left). In general the heuristic fails when the inner part
contains a bulbous end that does not fit within the outer
part. We can resolve this case by manually fragmenting
the push rod (right). Now the cross-section of the thin
stem of the rod fits within the cross-section of the hole in
the dust boot (inset).



Figure 12: Multiple parts in a stack can interlock. Here
all three highlighted parts interlock with the hole. Our
semi-automatic depth assignment algorithm uses con-
straint propagation to automatically choose depth values
for all of these parts so that they are properly layered be-
tween the front and back fragments of the hole.

user to choose either a fully automatic process or a com-
pletely manual interaction. Instead, the system can flu-
idly accept manual guidance at any stage in the author-
ing process. For instance, if the system is unable to find
the proper fragments because one of the fragmentation
assumptions is invalid, the user can manually divide a
part into front and back pieces and then use the automatic
depth assignment tool to infer a layering. Similarly, if the
system guesses incorrectly whether or not two parts fit
together, the user can first explicitly specify the correct
interlocking relationship and then use the system’s con-
straint solver to assign depth values.

3.5 Adding annotations

As an optional final step, the user can annotate individual
parts with labels and add guidelines that indicate explic-
itly how parts move in relation to one another. For each
part that requires a label, the user specifies the appropri-
ate label text. To indicate where a label should be placed,
the user clicks to set an anchor point (typically on or near
the part being labelled), and then drags the label to the de-
sired position (Figure 13). When the diagram is laid out,
the system keeps the offset between the label and its an-
chor constant so that the label moves rigidly with its cor-
responding part. To make the association between a part
and its label explicit, we render a line from the center of
the label to its anchor point. To create a guideline, the user
selects two parts and then drags out a line that connects
them in the desired fashion. Each endpoint of the line is
treated as an anchor that sticks to its corresponding part.
As a result, the guideline adapts appropriately as the parts
move. By default, guidelines are rendered as dotted lines.

4 Viewing

To display dynamic exploded view illustrations, we have
developed software that supports a number of useful in-
teractions to help the human viewer extract information
from the diagram.

X

Figure 13: To position a label, the user clicks to set an an-
chor point (left). By default, the system centers the label
on the anchor (middle). The user then drags the label to
the desired position (right).

4.1 Layout
To lay out the parts in a diagram, we again use a local
propagation algorithm [6] that works by traversing the
stack hierarchy in topological order, successively com-
puting and updating the position of each part based on
its predecessor and current offset. Although local propa-
gation cannot handle cycles, this is not an issue because
our stack hierarchies form a tree, as mentioned in Sec-
tion 3.1. Once all part positions have been calculated, the
system renders each part and its fragments at their speci-
fied depths. The user can also enable label and guideline
rendering in the viewing interface to display annotations.
To prevent visual clutter, the system only renders labels
and guidelines whose anchor points are unoccluded by
other parts.

4.2 Animated expand/collapse
The viewing program supports a simple but useful inter-
action that allows the viewer to expand or collapse the
entire diagram with the click of a button. To produce the
desired animation, the system smoothly interpolates the
current offset of each part either to its fully expanded or
fully collapsed state, depending on which animation the
user selects.

4.3 Direct manipulation
To enable the human viewer to focus on the interac-
tions and spatial relationships between a specific set of
parts without seeing all of an object’s components in ex-
ploded form, our system allows the user to selectively
expand and collapse portions of the diagram via con-
strained direct manipulation. After selecting a compo-
nent, the viewer can interactively modify its current offset
by dragging the part outwards or inwards within its stack.
The manipulation is constrained because a part can only
move along its explosion axis, no matter where the user
drags.

When the user initiates this interaction, the system first
records where the selected part is grabbed, as shown in
Figure 14. As the user drags, we compute the projection



Figure 14: The user clicks and drags to directly expand
the stack. The system projects the initial click point onto
the explosion axis (left). As the user drags, the tip of the
cursor is projected onto the explosion axis, and the cur-
rent offset of the part is adjusted so that it lies on the
projected point (right).

of the current mouse location onto the explosion axis. The
system then sets the current offset of the selected part
such that the grabbed point slides towards this projected
point. If the user drags a part beyond its fully collapsed
or expanded state, the system tries to modify the current
offsets of the predecessor parts to accommodate the in-
teraction. We consider each predecessor in order until we
get to the root, so that a part will only move if all of its
descendants (up to the manipulated component) are ei-
ther fully collapsed or expanded. Thus, the user can effec-
tively push a set of parts together or pull them apart one
by one. Three frames of interactive dragging are shown
in Figure 1.

4.4 Part search
In some cases, the viewer may want to locate a part that
is hidden from view when the object is in its fully col-
lapsed state. Instead of expanding the entire diagram and
then searching visually for the component in question,
our system allows the user to search for a part by looking
up its name or picture in a list of all the object’s com-
ponents (Figure 15). The viewing software expands the
object to reveal the requested part as well as the parts im-
mediately surrounding it in the stack in order to provide
the appropriate context.

5 Results
We have already presented example diagrams of a master
cylinder (Figure 1), a converter (Figure 2), and a phone
(Figure 15) that were created using our system. Another
example depicting a car (Figure 16) demonstrates how
our image-based framework can easily support arbitrary
rendering styles. In this case, the car is rendered using
markers.

Not surprisingly, we found that the time required to
author a diagram depends on the number of parts in the
object. The car and converter objects contain just a few
parts, and as a result, each of those examples took approx-

Figure 15: Visually searching for a particular part can be
difficult if the object contains lots of parts (left). Here the
viewer finally finds and selects the speaker for closer ex-
amination. In its fully collapsed state, the diagram is less
cluttered, but it is impossible to see internal parts (right
top). We provide an alternative search dialog that allows
viewers to search for any part by name or by picture.
Here, the viewing software expands the phone to reveal
the speaker as well as the parts immediately surrounding
it (right bottom).

imately five minutes to create. For the master cylinder and
phone, we spent roughly fifteen minutes segmenting the
original diagrams into parts. Although both of these ob-
jects contain many parts that interlock in complex ways,
we manually fragmented only two parts for the master
cylinder and eight parts for the phone, six of which were
screws. In both cases, we used semi-automatic fragmen-
tation to resolve the rest of the interlocking relationships.
Once we obtained the correct fragmentation, depth as-
signment was completely automatic for the master cylin-
der. For the phone we had to manually assign a depth
value for one of the fragments. Fragmentation and lay-
ering took roughly thirty minutes for the master cylinder
and forty minutes for the phone. Most of this time was
spent sketching cavity curves and providing manual guid-
ance when necessary.

When viewing the objects, we found the direct manip-
ulation interface to be extremely effective for conveying
the spatial relationships between components. This was
especially true for the master cylinder and phone because
they contain many parts. While the layering contributes



Figure 16: Interactive car diagram in its fully expanded
(left) and fully collapsed configurations (right).

to the illusion of depth, the act of manipulation itself pro-
duces a sensation of physically pushing components to-
gether or pulling them apart one by one. This direct inter-
action clarifies and reinforces the relationships between
parts. Furthermore, we found the ability to pull apart spe-
cific sections of each illustration very useful for browsing
a localized set of components. In addition to reducing the
amount of visual clutter, the ability to expand selectively
makes it possible to view a diagram in a small window.
For instance, the static phone illustration does not fit on
a 1024x768 laptop screen when viewed at full resolution
because the vertical stack is too tall in its fully exploded
state. However, in our interactive phone diagram, we can
easily view the phone on this display by expanding only
a subset of the object’s parts.

6 Future work and conclusion

There are many opportunities for future work in the do-
main of interactive diagrams. Here, we mention a few that
seem particularly interesting:

Arbitrary explosion paths. To achieve a more com-
pact exploded view layout, illustrators sometimes arrange
parts using non-linear explosion paths that are often indi-
cated with guidelines. With our system’s constraint-based
layout framework, it would be a relatively simple exten-
sion to support arbitrary, user-specified explosion paths.

Dynamic annotations. Although our system currently
supports labels and guidelines, the way in which these
annotations are laid out (i.e., as constant offsets from spe-
cific parts) is not very sophisticated. The main challenge
here is determining how to arrange this meta-information
dynamically to take into account the changing layout of
an interactive diagram.

Emphasis. It might be useful to provide diagram au-
thors with image-based tools for emphasizing and de-
emphasizing particular parts of the depicted object. These
tools might be something like intelligent filters that take
into account the perceptual effect of performing partic-
ular image transformations. Emphasis operations could
also be used at display time to highlight important parts.

Semantic zooming [3]. For extremely complicated ob-
jects, it could be useful to introduce multiple levels of
detail that would allow the viewer to interactively control
how much information is presented for particular portions
of the subject matter.

Depth cues. We have noticed that interactive diagrams
created from 2D images can sometimes have a “flattened”
appearance where layers overlap. It might be possible to
automatically render simple depth cues (e.g., drop shad-
ows) when viewing the diagram to clarify the spatial re-
lationships between these layers.

Exploded views are crucial for explaining the internal
structure of complicated objects. Interactive digital dia-
grams are especially important because they allow the
viewer to extract specific information from an illustra-
tion by dynamically modifying the way in which the
subject matter is presented. In this paper, we have de-
scribed a novel framework for creating and viewing in-
teractive exploded view diagrams using static images as
input. Specifically, we presented a set of authoring tools
that facilitates the task of creating such diagrams, and we
described a viewing program that enables users to bet-
ter understand spatial relationships between parts and the
overall structure of the object.

References
[1] Maneesh Agrawala, Doantam Phan, Julie Heiser,

John Haymaker, and Jeff Klingner. Designing ef-
fective step-by-step assembly instructions. In Pro-
ceedings of SIGGRAPH 03, 2003.

[2] William A. Barrett and Alan S. Cheney. Object-
based image editing. In Proceedings of SIG-
GRAPH 02, 2002.

[3] Benjamin B. Bederson and James D. Hollan.
Pad++: A zoomable graphical interface system. In
ACM User Interface Software and Technology Con-
ference Proceedings, 1994.

[4] Marcelo Bertalmio, Guillermo Sapiro, Vicent
Caselles, and Coloma Ballester. Image inpainting.
In Proceedings of SIGGRAPH 00, 2000.

[5] Stephen Biesty and Richard Platt. Incredible Body.
Dorling Kindersley, 1998.



[6] Alan Borning and Richard Anderson. Indigo: A lo-
cal propagation algorithm for inequality constraints.
In ACM User Interface Software and Technology
Conference Proceedings, 1996.

[7] Andreas Butz. Anymation with CATHI. In Pro-
ceedings of AAAI/IAAI ’97 in Providence / Rhode
island, pages 957–962. AAAI Press, 1997.

[8] Francis D. K. Ching. Design Drawing. John Wiley
and Sons, 1997.

[9] Antonio Criminisi, Patrick Perez, and Kentaro
Toyama. Object removal by exemplar-based in-
painting. In Proceedings of IEEE CVPR 03, 2003.

[10] Elaine Driskill and Elaine Cohen. Interactive de-
sign, analysis and illustration of assemblies. In 1995
Symposium on Interactive 3D Graphics, pages 27–
33. ACM Press, 1995.

[11] Jean-Daniel Fekete, Erick Bizouam, Eric Cournarie,
Thierry Gafas, and Frederic Taillefer. TicTacToon:
A paperless system for professional 2D animation.
In Proceedings of SIGGRAPH 95, 1995.

[12] James D. Foley, Andries van Dam, Stephen K.
Feiner, and John F. Hughes. Computer Graphics.
Principles and Practice. Addison-Wesley, 1990.

[13] P. Litwinowicz. INKWELL: A 2.5D animation sys-
tem. Computer Graphics, 25, 1991.

[14] Michael McGuffin, Liviu Tancau, and Ravin Bal-
akrishnan. Using deformations for browsing volu-
metric data. In IEEE Visualization, pages 401–408,
2003.

[15] Paul Mijksenaar and Piet Westendorp. Open Here:
The Art of Instructional Design. Joost Elffers
Books, New York, 1999.

[16] Riaz Mohammad and Ehud Kroll. Automatic gen-
eration of exploded views by graph transformation.
In Proceedings of IEEE AI for Applications, pages
368–374, 1993.

[17] E. Mortensen and W. Barrett. Interactive segmenta-
tion with intelligent scissors. Graphical Models and
Image Processing, 1998.

[18] Chris Niederauer, Mike Houston, Maneesh
Agrawala, and Greg Humphreys. Non-invasive
interactive visualization of dyanamic architectural
environments. In Proceedings of SIGGRAPH
I3D 03, 2003.

[19] Richard Orr and Moira Butterfield. Nature Cross-
Sections. Dorling Kindersley, 1998.

[20] A. Raab and M. Rüger. 3D-ZOOM interactive vi-
sualization of structures and relations in complex

graphics. In 3D Image Analysis and Synthesis,
pages 87–93, 1996.

[21] Thomas Rist, Antonio Krüger, Georg Schneider,
and Detlev Zimmerman. AWI A workbench for
semi-automated illustration design. In Proc. of Ad-
vanced Visual Interfaces, pages 59–68, 1994.

[22] Felix Ritter, Bernhard Preim, Oliver Deussen, and
Thomas Strothotte. Using a 3d puzzle as a metaphor
for learning spatial relations. In Graphics Interface,
pages 171–178, 2000.

[23] Dorée Duncan Seligmann and Steven Feiner. Au-
tomated generation of intent-based 3D illustrations.
In Proceedings of SIGGRAPH 91, pages 123–132,
July 1991.

[24] Michael A. Shantzis. A model for efficient and
flexible image computing. In Proceedings of SIG-
GRAPH 94, Computer Graphics Proceedings, An-
nual Conference Series, pages 147–154, July 1994.

[25] T. A. Thomas. Technical Illustration 3rd Edition.
McGraw Hill, 1978.

[26] Edward Tufte. Visual Explanations. Connecticut:
Graphics Press, 1997.


