
Online Submission ID: 0133

Automated Generation of Interactive 3D Exploded View Diagrams

Abstract
We present a system for creating and viewing interactive exploded
views of complex 3D models. In our approach, a 3D input model
is organized into an explosion graph that encodes how parts ex-
plode with respect to each other. We present an automatic method
for computing explosion graphs that takes into account hierarchi-
cal input models and handles common classes of interlocking parts.
Our system also includes an interface that allows users to interac-
tively explore our exploded views using both direct controls and
high-level interaction modes.

CR Categories: I.3.5 [Computer Graphics]: Computational Geom-
etry & Object Modeling; I.3.8 [Computer Graphics]: Applications

Keywords: exploded view illustration, interactive, visualization

1 Introduction
Complex 3D objects, such as mechanical assemblies, electronic de-
vices, and architectural environments, are typically composed of
numerous parts. To convey the internal structure of such objects, il-
lustrators often create exploded views in which parts are separated
(or “exploded”) away from one another to reveal parts of interest.
Well designed exploded views not only expose internal parts, they
also convey the global structure of the depicted object and the lo-
cal spatial relationships between parts. Furthermore, unlike other
illustration techniques that reveal internal parts in situ by remov-
ing or de-emphasizing occluding geometry, such as cutaways and
transparency, exploded views show the details of individual parts.

However, traditional static exploded views have several limitations
that can make it difficult for viewers to browse the part structure
of complex objects and focus on different subsets of parts. Since
most exploded views expose all the parts in an object, they often
suffer from excess visual clutter. As a result, the viewer may have
to carefully inspect the entire illustration to locate parts of interest.
Furthermore, parts that are close to one another may end up far apart
when the object is fully exploded, making it difficult for the viewer
to determine how parts of interest are positioned and oriented with
respect to the rest of the model. Finally, static exploded views do
not allow viewers to explore spatial relationships at different levels
of detail. For instance, a viewer might first want to see how two sub-
assemblies fit together before examining their constituent parts.

In this paper, we present a system for creating and viewing inter-
active 3D exploded views that allow users to explore the spatial
relationships between specific parts of interest. In our approach, we
automatically determine the order and directions in which parts can
explode without violating blocking constraints (i.e., without pass-
ing through each other) and then use this information to implement
high-level viewing tools that expand and collapse parts dynami-
cally. For instance, the user can select target parts of interest from a
list, and the system automatically generates an exploded view that
exposes the targets without showing every other part in the object.
The user can then directly expand and collapse the exposed parts
along their explosion directions to better see how they fit together.

Our work makes several contributions. We present an automatic
technique for organizing 3D models into layers of explodable parts
that handles the most common classes of interlocking parts. We also
introduce two algorithms for exposing user-selected target parts,
one that explodes the necessary portions of the model in order to
make the targets visible, and one that combines explosions with

Figure 1 Exploded view diagram generated by our system. Our system in-
struments 3D models to enable interactive exploded views. This illustration
of a turbine model was automatically computed to expose the user-selected
target part labeled in red.

dynamic cutaway views, as described by Li et al. [2007]. We also
present several interactive viewing tools that allow the user to di-
rectly explore and browse our exploded views.

2 Related work

There is a large amount of existing work on visualizing the inter-
nal structure of complex 3D objects. Here, we focus on previous
techniques that rearrange rather than remove geometry in order to
expose parts of interest.

A number of digital illustration systems provide tools for creating
exploded views [Adobe Inc. ; Agrawala et al. 2003; Driskill and Co-
hen 1995; Li et al. 2004; Rist et al. 1994]. A limitation of most of
these systems is that the user must manually specify the explosion
directions and blocking relationships for all parts in the model. A
notable exception is the work of Agrawala et al. [2003], whose tech-
niques for generating step-by-step assembly instructions automati-
cally determine the order and directions in which parts can explode
without violating blocking constraints. We present an automatic al-
gorithm for computing exploded views that extends this work to
take into account part hierarchies and to handle the most common
cases in which parts interlock.

Most existing systems generate exploded views that are either
meant to be viewed statically [Driskill and Cohen 1995; Rist et al.
1994] or provide limited interactive viewing controls (e.g., a sin-
gle knob for expanding the entire exploded view [Agrawala et al.
2003]). Since a key goal of our system is to enable users to in-
teractively explore complex 3D objects, we provide a richer set of
interactions. The viewing interface for our system is inspired by the
work of Li et al. [2004], who present viewing tools that allow users
to directly manipulate and search for parts. However, their tech-
niques are designed for 2.5D illustrations, and thus do not automat-
ically compute or maintain blocking constraints between parts.

Whereas traditional exploded views typically separate parts along
linear explosion directions, researchers have developed visualiza-
tion techniques that “explode” parts using other types of transfor-
mations. Some of these approaches peel away layers of parts using

1



Online Submission ID: 0133

{
Drill bit

sub-assembly

Explosion
directions

Figure 2 Explosion conventions. This illustration of a drill incorporates
several explosion conventions described in Section 3.1. Image credit: Miles
Tool & Machinery Centre schematic (www.mtmc.co.uk)

non-rigid deformations [Correa et al. 2006; McGuffin et al. 2003].
Others extend 2D fisheye techniques to expose and enlarge parts of
interest in 3D scenes [Carpendale et al. 1997; LaMar et al. 2001;
Raab and Rüger 1996; Wang et al. 2005]. Recent work by Bruck-
ner and Gröller [2006] uses a force-based model to push occluding
parts out of the way. Our work focuses on the challenges of gener-
ating more traditional exploded views.

3 Conventions from traditional illustration

The conventions described below were distilled from a large corpus
of example illustrations taken from technical manuals, instructional
texts on technical illustration, and educational books that focus on
complex mechanical assemblies [Hoyt 1981; Platt and Biesty 1996;
Dennison and Johnson 2003].

3.1 Explosion conventions

When creating exploded views, illustrators carefully choose the di-
rections in which parts should be separated (explosion directions)
and how far parts should be offset from each other based on the
following factors. The example illustration in Figure 2 incorporates
several of these conventions.

Blocking constraints. Parts are exploded away from each other in
unblocked directions. The resulting arrangement of parts helps the
viewer understand local blocking relationships and the relative po-
sitions of parts.

Visibility. The offsets between parts are chosen such that all the
parts of interest are visible.

Compactness. Exploded views often minimize the distance parts
are moved from their original positions to make it easier for the
viewer to mentally reconstruct the model.

Canonical explosion directions. Many objects have a canonical co-
ordinate frame that may be defined by a number of factors, includ-
ing symmetry (as in Figure 2), real-world orientation, and domain-
specific conventions. In most exploded views, parts are exploded
only along these canonical axes. Restricting the number of explo-
sion directions makes it easier for the viewer to interpret how each
part in the exploded view has moved from its original position.

Part hierarchy. In many complex models, individual parts are
grouped into sub-assemblies (i.e., collections of parts). To empha-
size how parts are grouped, illustrators often separate higher-level
sub-assemblies from each other before exploding them indepen-
dently, as shown in Figure 2.

Cutaway view
for context

Exploded view
for detail

Separation 
distance

Container

(a) Split container (b) Contextual cutaway

Figure 3 Cutting conventions for exploded views. Image credits: (a)
Stephen Biesty c© Dorling Kindersley; (b) Bill Sherwood’s Differential
Page (www.bilzilla.org)

3.2 Cutting conventions in exploded views

Illustrators often incorporate cuts in exploded view diagrams. Here,
we describe two common ways in which cuts are used.

Splitting containers. In many complex models, some internal parts
are nested within container parts. To visualize such containment
relationships, illustrators often split containers with a cutting plane
through the centre of the part and then explode the two container
segments away from each other to expose the contained parts (see
Figure 3a). To emphasize that the segments originate from the same
part, the orientation of the plane is chosen to minimize the distance
the segments must be separated to make the internal parts visible.

Contextual cutaways. In some cases, a cutaway view is used to
provide additional context for an exploded view. For example, in
Figure 3b, the cutaway view (bottom) allows the viewer to see how
the sub-assembly of interest is positioned and oriented with respect
to surrounding structures, and the exploded view (top) exposes the
sub-assembly’s constituent parts.

4 Implementing exploded views

The minimum input to our system is a 3D solid model whose in-
dividual parts are represented as separate geometric objects. The
following additional information may be specified to help the sys-
tem generate higher quality exploded views.

Part hierarchy. If the input model is organized into a hierarchy of
sub-assemblies, our system generates hierarchical exploded views
that enable exploration at any level of the part hierarchy.

Explosion directions. By default, our system allows parts to ex-
plode only in directions parallel to the coordinate frame axes of the
entire model. However, a different set of directions may be speci-
fied as part of the input. All of the example illustrations shown here
were generated using the default explosion directions.

Cutaway instrumentation. If the input model is instrumented to
enable cutaway views, as described by Li et al. [2007], our system
automatically combines exploded views with contextual cutaways
to expose user-selected sub-assemblies.

In the remainder of this section, we describe a representation for
3D exploded views and then present an automatic technique for
constructing this representation from the 3D input model.

4.1 Exploded view representation

To enable interactive exploded views, our system organizes parts
into a directed acyclic explosion graph, as shown in Figure 4b. The
structure of the graph defines the relative order in which parts can
be exploded without violating blocking constraints. In particular, a
part can explode as long as all of its descendants in the explosion

2



Online Submission ID: 0133

a

b

d

e

f

g

h

c

a

b

c

d

e

f

g

h

a

b

c

d

e

f

g

h

(a) Input model (b) Explosion graph

(c) Exploded model

Figure 4 Explosion graph representation.

graph have been moved out of the way. For each part p, the graph
also stores an explosion direction and the current offset of p from
its initial position. We define this initial position with respect to the
largest of the direct parents of p, which encourages smaller parts to
move together with larger parts. To expand and collapse different
portions of the exploded view, the system simply modifies the part
offsets.

Since many of the computations described below need to know
whether parts touch, block, or contain each other, our system com-
putes auxiliary data structures that encode these low-level spatial
relationships. Contact and blocking relationships are computed and
stored in the manner described by Agrawala et al. [2003]. For a
given part p, these data structures can be queried to determine all
the parts that touch p and all the parts that block p from moving in
each of the possible explosion directions. We use an approximate
definition of containment that is computed as follows. For each pair
of parts (p1, p2), our system checks whether the convex hull of p2
is completely inside the convex hull of p1 and if p1 blocks p2 from
moving in each of the possible explosion directions. If so, p1 is
considered to contain p2.

4.2 Constructing the explosion graph

Our basic approach for computing explosion graphs is similar to
the method of Agrawala et al. [2003] for determining assembly se-
quences. We first describe this algorithm before introducing two
important extensions that allow our system to take into account part
hierarchies and handle common classes of interlocking parts.

Basic approach

To construct the explosion graph, we use an iterative algorithm that
removes unblocked parts from the model, one at a time, and adds
them to the graph. To begin, all model parts are inserted into a set S
of active parts. At each iteration, the system determines the set of
parts P ⊆ S that are unblocked in at least one direction by any other
active part. For each part p ∈ P, the system computes the minimum
distance p would have to move (in one of its unblocked directions)
to escape the bounding box of the active parts in contact with p. The
part pi ∈ P with the minimum escape distance is added to the graph.
An edge is added from every active part that touches pi, and the
direction used to compute the minimum escape distance is stored
as the explosion direction for pi. Finally, pi is removed from S.
The algorithm terminates when no unblocked parts can be removed
from S.

Sub-assembly C

Sub-assembly A

a

b

c

d

e

f

g

h

{

{
Sub-assembly B

(a) Hierarchical
input model

(b) Hierarchical
explosion graph

Figure 5 Hierarchical explosion graph.

Using part hierarchies

If the model has a part hierarchy, our system computes a nested col-
lection of explosion graphs, as shown in Figure 5. This approach en-
ables sub-assemblies at any level of the part hierarchy to expand and
collapse independently. For each sub-assembly A, the system com-
putes an explosion graph by treating all of the direct children of A
in the part hierarchy (which may themselves be sub-assemblies) as
atomic parts and then applying the algorithm described above.

Handling interlocked parts

In some cases, the parts in the active set may be interlocked such
that no unblocked part can be removed. Here, we describe how our
system handles two common classes of interlocking parts.

Sub-assembly
A

{ Partial
sub-assembly

{

(a) Interlocked (b) Split

Figure 6 Splitting sub-assembly A.

Splitting sub-assemblies
When computing the explosion
graph for a hierarchical input
model, the active set may contain
interlocked sub-assemblies. In
such cases, the system attempts to
split interlocked sub-assemblies
into smaller collections of parts
(see Figure 6). Given an inter-
locked sub-assembly A, the sys-
tem computes the largest partial sub-assembly (i.e., subset of parts
in A) that can be separated from the remaining active parts and
then removes this partial sub-assembly from the set of active parts.
If there is more than one interlocked sub-assembly, the system
computes the largest removable partial sub-assembly for each one.
Amongst these computed partial sub-assemblies, the smallest one
is removed from the set of active parts.

Container c

Splitting
direction

Cutting plane

Cutting plane

Segment c

Segment c

(a) Interlocked

(b) Split

1

2

Figure 7 Splitting container c.

Splitting containers
If any of the interlocked parts is an
atomic container part whose only
blockers are contained parts, the
system splits the container into two
segments that are then removed
from the set of active parts, as
shown in Figure 7. To split a con-
tainer c, the system selects one of
the candidate explosion directions
and then splits c into two segments
c1 and c2 with a cutting plane that
passes through the bounding box
centre of c and whose normal is par-
allel to the chosen explosion direc-
tion. The explosion direction is de-
termined in a view-dependent man-
ner. The system explodes the set of
contained parts P and then, for each

3



Online Submission ID: 0133

candidate direction, measures how far c1 and c2 would have to sep-
arate in order to completely disocclude and escape the 3D bounding
box of P (see Figure 7b). In accordance with the cutting conventions
described in Section 3.2, the container c is split in the direction that
requires the smallest separation distance.

If some of the parts in P are themselves containers, the system
emphasizes their concentric containment relationships by consid-
ering only explosion directions where the bounding boxes of the
nested containers remain inside the exploded bounding box of c.
If none of the splitting directions satisfy this constraint, the system
chooses the splitting direction that causes the smallest total volume
of nested container bounding boxes to extend beyond the exploded
bounding box of c.

4.3 Precomputation

Since the viewing direction can influence how container parts are
split, explosion graphs may be view-dependent. Recomputing these
data structures on the fly as the viewpoint changes can cause some
lag in the viewing interface. Instead, our system precomputes ex-
plosion graphs from the 26 viewpoints that correspond to the faces,
edges and corners of an axis-aligned cube that is centered at the
model’s bounding box center and is large enough to ensure that the
entire model is visible from each viewpoint. At viewing time, the
system automatically switches to the precomputed explosion graph
closest to the current viewpoint.

5 Viewing interactive exploded views

Once the explosion graph is computed, the model can be explored
in our viewing interface, which provides both direct controls and
higher-level interaction modes to help users find parts of interest
and explore specific portions of the model.

5.1 Animated expand/collapse

Our system allows the user to expand or collapse the entire ex-
ploded view with a single click. Each part is animated to its fully
exploded or collapsed position by updating its current offset. To
ensure that parts do not violate blocking constraints during the ani-
mation, the system expands parts in reverse topological order with
respect to the explosion graph. In other words, the descendants of
each part are expanded before the part itself. For hierarchical mod-
els, higher-level (i.e., larger) sub-assemblies are expanded before
lower-level sub-assemblies. The system collapses parts in the op-
posite order.

5.2 Direct manipulation

The system also supports the direct manipulation of parts. As the
user drags a part p, the system slides p along its explosion direction
and updates the current offset of p. If the user drags p past its fully
exploded or collapsed position, the system propagates the offset
through the explosion ancestors of p until it encounters a part with
a different explosion direction. Propagating offsets in this manner
allows the user to expand or collapse an entire collection of parts,
just by dragging a single part.

This type of constrained direct manipulation for exploded views
was introduced in the image-based system of Li et al. [2004]. How-
ever, that approach does not automatically compute and enforce
blocking constraints. In our system, blocking constraints are main-
tained in real time during direct manipulation. As the user drags
part p, the system checks for blocking parts amongst the descen-
dants of p in the explosion graph and stops p from moving if such
parts are found. A single click causes the blocking parts to move
out of the way, which allows the user to continue dragging.

5.3 Riffling

The viewing interface also provides a riffling mode, in which parts
are exploded away from adjacent portions of the model as the user
hovers over them with the mouse. When the mouse moves away,
the part that was beneath the mouse returns to its initial position.
If the user clicks, the selected part remains separated as the mouse
moves away. Riffling allows the user to quickly isolate parts or sub-
assemblies and to see which portions of the model can be expanded
without actually dragging on a part.

5.4 Automatically exposing target parts

In addition to the direct controls described above, the viewing sys-
tem provides a high-level interface for generating exploded views
that expose user-selected target parts. The user just chooses the tar-
gets from a list of parts and the system automatically generates a
labeled exploded view illustration. Parts are smoothly animated to
their new positions to help the user see which portions of the model
have been expanded and collapsed. We describe two different tech-
niques for generating illustrations. By default, the system expands
specific portions of the model to expose the target parts. If the model
has been instrumented for cutaway views (as described by Li et
al. [2007]), the system can also generate illustrations that combine
explosions with contextual cutaways.

Exposing target parts with explosions

For non-hierarchical models, the algorithm works as follows. Given
a set of target parts T , the system visits each part p in topological
order with respect to the explosion graph and moves p if necessary
to ensure that no visited target part is occluded by any other visited
part. That is, p is moved to meet the following two conditions:

1. p does not occlude any previously visited target parts.
2. if p ∈ T , p is not occluded by any visited part.

To visually isolate target parts from surrounding parts, the algo-
rithm moves p to meet two additional conditions that ensure each
target is separated from its touching parts, even if those touching
parts do not actually occlude the target:

3. p is not occluded by any visited target part that touches p.
4. if p ∈ T , p does not occlude any visited part that touches p.

p

p p

p

Condition 1 Condition 2 Condition 3 Condition 4

Visibility frustum
for target part

Target
part

Condition 1:
move p s.t. p does not
occlude visited target

Condition 2:
move p s.t. p is not

occluded by visited part

Condition 3:
move p s.t. p is not

occluded by visited target
that touches p 

Condition 4:
move p s.t. p does not

occlude visited part
that touches p 

Figure 8 Conditions for moving part p. For each condition, the target part
is outlined in red. The orange visibility frusta show how unwanted occlu-
sions have been eliminated in each case.

To satisfy these conditions, the system performs the relevant occlu-
sion tests and if necessary, moves p the minimum distance along
its explosion direction such that all unwanted occlusions are elim-
inated. To successfully eliminate unwanted occlusions, the explo-
sion direction of p must not be exactly parallel to the viewing di-
rection. If it is parallel, the system informs the user that one of the
targets cannot be exposed from this viewpoint; in practice, such
failure cases rarely arise. If p is moved, the explosion graph de-
scendants of p are also moved out of the way so that no blocking
constraints are violated. Since the position of a part only depends

4



Online Submission ID: 0133

Target part

Visibility frustum
for target part

{Sub-assembly A

Iteration 1:
move parts within

sub-assembly A

Iteration2:
move sub-assembly A

Iteration 3:
move parts within

sub-assembly A

Figure 9 Exposing a target part within a hierarchical model. To expose the
target part within sub-assembly A, the algorithm iteratively removes target
occlusions within A (iteration 1) and moves A itself to enforce blocking
constraints (iteration 2). When the algorithm converges at iteration 3, the
target is visible and all blocking constraints are satisfied.

on the positions of its explosion graph ancestors, visited targets are
guaranteed to remain visible with respect to visited parts after each
part is processed. Thus, once every part has been processed, the
resulting exploded view will have no occluded target parts.

For hierarchical models, the algorithm starts by processing the
highest level sub-assembly in the part hierarchy. Atomic parts and
sub-assemblies that do not contain any target parts are processed as
described above to eliminate target occlusions. However, when the
algorithm encounters a sub-assembly A that contains one or more
target parts, the algorithm recursively processes the parts within A
to expose these targets. Once this recursive procedure returns, the
system checks whether A (in its new configuration) violates block-
ing constraints with respect to any visited parts or occludes any
visited targets not contained in A. If so, the algorithm iteratively
increases the current offset of A and then repeats the recursive com-
putation for A until no blocking constraints are violated and all vis-
ited targets are visible (see Figure 9). At each iteration, the cur-
rent offset of A is increased by one percent of the bounding box
diagonal for the entire model. The exploded views shown in Fig-
ures 1, 11a, and 11b were generated using this algorithm.

Exposing target sub-assemblies with cutaways and explosions

If the input model is instrumented for cutaways and the user selects
an entire sub-assembly A as a target, the system first generates a cut-
away view that exposes A in context and then explodes A away from
the rest of the model through the cutaway hole. Finally, the system
explodes A itself to expose its constituent parts (see Figure 10). To
generate the cutaway, the system first chooses an explosion direc-
tion for A. Given the viewing direction v, the system chooses the
explosion direction d that allows A to escape the model’s bound-
ing box as quickly as possible and satisfies the constraint d · v < 0.
Using the method of Li et al. [2007], the system creates a cutaway
that is large enough to allow A to explode away from the rest of the
model in direction d.

6 Results
We have used our system to generate exploded views of several
3D models, as shown in Figures 1, 10, 11, and 12. The disk brake,
iPod, arm, turbine, and transmission datasets contain 18, 19, 22,
26, and 55 parts, respectively. The arm model has no part hierarchy.
The other models include part hierarchies with 3 to 4 levels of sub-
assemblies. To generate the exploded view of the turbine shown in
Figure 1, the system automatically determined how to split two con-
tainer parts: the outer shell and the exhaust housing. The exploded

Figure 10 Exploded view with contextual cutaway. To expose the user-
selected sub-assembly, the system first generates a cutaway view (left) and
then explodes the sub-assembly through the cutaway hole (right).

views shown in Figures 1, 10, 11a, and 11b were generated auto-
matically to expose user-specified target parts. These illustrations
clearly show the parts of interest without exploding unnecessary
portions of the model. In addition, Figure 10 shows how a contex-
tual cutaway view helps convey the position and orientation of the
exploded sub-assembly with respect to the rest of the model.

Although exploded views are typically used to illustrate manufac-
tured objects, we also tested our system with a musculoskeletal
model of a human arm. Since many of the muscles in the arm twist
around each other where they attach to bones, we manually sec-
tioned off part of the arm where the muscles are less intertwined
and then used this portion of the dataset as the input to our sys-
tem. To emphasize how the muscles are layered from the outside
to the inside of the arm, we also restricted the system to use a sin-
gle explosion direction. From this input, our system automatically
computed the exploded view shown in Figure 12.

7 Conclusions and future work

In this paper, we have presented techniques for creating and viewing
interactive exploded view illustrations of 3D models composed of
many distinct parts. Our contributions include an automatic method
for decomposing models into explodable layers and algorithms for
generating dynamic exploded views that expose user-selected tar-
get parts. Our results demonstrate that our approach can be used to
create effective interactive exploded views for a variety of models.

We conclude by mentioning a few areas for future work:

Inferring parts to expose. Our system allows users to directly spec-
ify target parts to expose. In some cases, showing additional parts
can provide more context for the specific parts of interest. It would
be interesting to explore techniques that automatically infer which
additional parts to expose based on the user-selected targets.

Continuous measure of blocking. Some 3D models contain ge-
ometric errors that introduce false blocking relationships. For in-
stance, surfaces that are meant to be adjacent sometimes end up
interpenetrating slightly. Such errors will cause many blocking
computations (including the method used in our system) to detect
the wrong blocking relationships between parts. One potential ap-
proach would be to construct exploded views based on some con-
tinuous measure of the “amount” of blocking between parts.

Automatic guidelines. As shown in previous work [Agrawala et al.
2003; Li et al. 2004], guidelines can be useful for clarifying
how exploded parts fit back together. Although some previous
work [Agrawala et al. 2003] has been done on computing guide-
line placement automatically, existing methods do not consider all
of the conventions that illustrators use to create effective guidelines.

5



Online Submission ID: 0133

(a) iPod (b) Transmission (c) Disk brake

Figure 11 Exploded views generated by our system. The illustrations of the iPod (a) and transmission (b) were automatically generated to expose the
user-selected target parts labeled in red. The sequence of images on the right shows the disk brake model exploding in stages (c).

Figure 12 Exploded view of arm. To create this visualization, we sectioned
off a portion of the arm to explode. Within this portion, our system auto-
matically computed the layering relationships between the muscles.

References

ADOBE INC. Acrobat 3D.

AGRAWALA, M., PHAN, D., HEISER, J., HAYMAKER, J.,
KLINGNER, J., HANRAHAN, P., AND TVERSKY, B. 2003.
Designing effective step-by-step assembly instructions. ACM
Transactions on Graphics 22, 3 (July), 828–837.

BRUCKNER, S., AND GROLLER, M. 2006. Exploded views for
volume data. IEEE Transactions on Visualization and Computer
Graphics 12, 5 (Sept./Oct.), 1077–1084.

CARPENDALE, M. S. T., COWPERTHWAITE, D. J., AND FRAC-
CHIA, F. D. 1997. Extending distortion viewing from 2D to
3D. IEEE Computer Graphics and Applications: Special Issue
on Information Visualization 17, 4, 42–51.

CORREA, C., SILVER, D., AND CHEN, M. 2006. Feature aligned
volume manipulation for illustration and visualization. IEEE
Transactions on Visualization and Computer Graphics 12, 5
(Sept./Oct.), 1069–1076.

DENNISON, J. A., AND JOHNSON, C. D. 2003. Technical Illus-
tration: Techniques and Applications. Goodheart-Wilcox.

DRISKILL, E., AND COHEN, E. 1995. Interactive design, analysis
and illustration of assemblies. In Proceedings of the Symposium
on Interactive 3D Graphics.

HOYT, W. A. 1981. Complete Car Care Manual. Reader’s Digest
Association.

LAMAR, E., HAMANN, B., AND JOY, K. I. 2001. A magnifi-
cation lens for interactive volume visualization. In 9th Pacific
Conference on Computer Graphics and Applications, 223–232.

LI, W., AGRAWALA, M., AND SALESIN, D. H. 2004. Interactive
image-based exploded view diagrams. In Proceedings of Graph-
ics Interface 04.

LI, W., RITTER, L., AGRAWALA, M., CURLESS, B., AND
SALESIN, D. 2007. Interactive cutaway illustrations of com-
plex 3d models. ACM Transactions on Graphics 26, 3 (July),
31:1–31:11.

MCGUFFIN, M. J., TANCAU, L., AND BALAKRISHNAN, R. 2003.
Using deformations for browsing volumetric data. In Proceed-
ings of IEEE Visualization 2003, 401–408.

PLATT, R., AND BIESTY, S. 1996. Stephen Biesty’s Incredible
Explosions. DK Children.

RAAB, A., AND RÜGER, M. 1996. 3D-ZOOM: interactive visu-
alization of structures and relations in complex graphics. In 3D
image analysis and synthesis, 87–93.

RIST, R., KRÜGER, A., SCHNEIDER, G., AND ZIMMERMANN,
D. 1994. AWI: A workbench for semi-automated illustration
design. In Proceedings of Advanced Visual Interfaces 94.

WANG, L., ZHAO, Y., MUELLER, K., AND KAUFMAN, A. E.
2005. The magic volume lens: An interactive focus+context
technique for volume rendering. In Proceedings of IEEE Visual-
ization 2005, 367–374.

6


