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Abstract

We presenta methodfor learninga modelof humanbodyshapevariation froma corpusof 3D range scans.Our
modelis the�r st to capture bothidentity-dependentandpose-dependentshapevariation in a correlatedfashion,
enablingcreationof a varietyof virtual humancharacters with realisticandnon-linearbodydeformationsthat
are customizedto theindividual.Our learningmethodis robustto irregular samplingin pose-spaceandidentity-
space, andalsoto missingsurfacedatain theexamples.Our synthesizedcharactermodelsarebasedonstandard
skinningtechniquesandcanberenderedin real time.

CategoriesandSubjectDescriptors(accordingto ACM CCS): I.3.5 [ComputerGraphics]:Curve,surface,solidand
objectmodeling;I.3.7 [ComputerGraphics]:Animation

1. Intr oduction

One of the main challengesin creatinganimatedhuman
charactersfor computergraphicsis theproblemof modeling
realisticbodyshapes.Manuallymodelinga high-resolution
shapethatwill passashumanis very dif�cult. Furthermore,
a statically-modelledshapemustbegivena “skeleton”and
rigged for animation,so that it can be put into different
poses.This rigging processincludesenveloping, wherethe
initial shapeis deformedto follow theunderlyingskeleton,
andthenmodelingfurtherdeformationsto accountfor mus-
cle bulges,bonesthat slide beneaththe skin, dimples,and
otherchangingaspectsof theunderlyingtissues.Thesetasks
mustberepeatedfor eachdifferentcharacter(“identity”) that
is modelled.

To avoid this manualeffort, it hasbecomepopularto use
datacapturetechniquessuchas3D scanningto createhu-
manmodels.However, previous approacheshave many re-
strictions,suchasrequiringcompleteor near-completesur-
faceexamples,or exampleswhereeachjoint is moved in-
dependentlyat preciseangles(suchexamplesmustbemade
by an artist, sincereal humanscannotmeetsuchstringent
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constraints).Moreover, no existing modelis ableto capture
the relationshipbetweendifferent identitiesand their dif-
ferentpose-dependentdeformations.Below we will discuss
someprevious “example-based”approaches,andintroduce
ournovel approach.

1.1. Relatedwork

We begin by consideringapproachesfor modeling pose-
dependentdeformations,suchas musclebulgesand other
anatomicaleffects.Of course,oneoptionis to directlymodel
theanatomy, asin thework of Scheeperset al. [SPCM97]
andmany others.Theanatomicalapproachis verypromising
and�e xible, however it requiresa lot of manualmodeling,
and is not suitablefor real-timeinteractionswith multiple
charactersdueto theoverheadof physicalsimulation.

In this paperwe will focus on example-basedmethods,
where the anatomicaleffects arise from a genericshape-
modifying function that is �t to examples.Oneapproachis
to learna linearfunctionof thejoint anglethatmodi�es the
shape.For example,the multi-weight embeddingof Wang
and Philips [WP02] usesa set of per-elementweightson
thecoordinatematricesof eachjoint to alterthe�nal shape.
Mohr andGleicher[MG03] addextra joints to theskeleton
to modulatetheshapeasa functionof pose.Anguelov et al.
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[ASK� 05] learna linearfunctionthatis appliedwithin ade-
formationtransferframework.

For modelingdeformationsthat arenon-linearfunctions
of pose,scattered-datainterpolation techniquesare often
used. For example, Lewis et al. [LCF00], Sloan et al.
[SRC01], andKry et al. [KJP02] useradialbasisfunctions
to createa functionof thejoint anglesthat interpolatesa set
of exampleshapes.Allen et al. [ACP02] usea similar k-
nearest-neighborinterpolationapproach.

Scattered-datainterpolationis usefulwhentheunderlying
parametersof variationareexposed(e.g.,joint angles),but
whenconsideringtheproblemof modelinganentirepopula-
tion of shapes(e.g.,all humanfacesor bodies),it is unclear
what the underlyingparametersshouldbe.For this reason,
latentvariablemodelsareoftenemployed,suchasPrincipal
ComponentAnalysis(PCA).Thesetechniquesmodelshape
variation as a projectiononto a low dimensionalsubspace
of shapespace.The coordinatesof eachshapein this sub-
spacearethelatentvariables.PCAhasbeenappliedto char-
actermodelingproblems,suchasanalyzingvariationamong
faces[BV99], or amongbodies[ACP03,SCMT03].

The next logical stepis to have a combinedmodel that
cangenerateany identity in any pose.Sloanet al. [SRC01]
extend their scattered-datainterpolationmethodto include
identity by addingparametervaluessuchas“male-female”.
However, their approachrisks con�ating thesetwo axes if
the examplesare not preciselyspacedin parameter-space.
For example, it is possiblethat bendingthe elbow could
make thecharacterbecomemorefemale.

Another combined model is the SCAPE approachof
Anguelov etal. [ASK� 05]. SCAPElearnspose-deformation
asacompletelyseparatephenomenonfrom theirPCA-based
identity-variationmodel,andthencombinesthetwo modal-
ities whena new shapeis synthesized.This model is very
powerful, but it cannotcapturethe correlationbetweenthe
two modes.For example,when a muscularpersonbends
their arm,theshapechangewill bethesameaswhena very
thin personbendstheirarm.

Multi-linear approaches,suchasVlasic et al. [VBPP05]
usemulti-linearalgebrato extendlatentvariabletechniques
to handlemultiple modalities,suchasthe identity, expres-
sion,andvisemeof a face.In principle, thesameapproach
couldbeappliedto bodies.However, samplingbodyposesis
muchharderthansamplingexpressions,becausemany more
samplesareneeded,andit is dif�cult to controlexactlywhat
posesarecaptured(e.g.,it is hardto requestthat a subject
shouldachieve a preciseshoulderrotationangle).In addi-
tion,bodydeformationsareverylocalized(moving onejoint
affectsonly a few of theverticesof thebody),which would
beinef�ciently representedasfull tensors.

1.2. Overview

Our novel approachis to take thebestfeaturesof scattered-
datainterpolationandlatentvariablemodels,andcombine

theminto ahybrid model.Ratherthanbuilding a latentvari-
able model of just shape,we will build a latent variable
modelthat includesthefull setof interpolationkeys needed
to generatea model in any pose.Using this approach,we
encapsulatethecorrelationbetweenposeandidentity, while
keepingthesetwo modalitiesfrom beingcon�ated.We will
presenta methodfor learningour modelgiven an arbitrary
setof examplesof differentindividualsin differentposes.In
addition,unlike previousmethods,our systemcanincorpo-
rateincompletesurfaces,whereonly partof thefull surface
is observed.

To train our modelwe requirea large corpusof 3D data
that covers the rangeof identity and posevariation. We
used44 subjectsfrom theCAESARproject(seeAllen et al.
[ACP03]) who were capturedin a standardstandingand
seatedpose,eachwith 74 landmarkpositionslabelled.For
anadditional5 subjects,werepeatedtheCAESARscanning
process,but with atotalof 16differentposes.These� vesub-
jectswereselectedto cover a variety of heightandweight
combinations.Finally, we includedscansof a singleperson
in 69poses(asdescribedby Anguelov etal. [ASK� 05]).

Thecontributionsof thispaperarebrokeninto threeparts.
First, in Section2 we describetheenvelopingproblem,and
introduceour modi�cations for corrective enveloping. In
Section3, we will discussthe matching problem,wherea
consistentshaperepresentationis generatedfor eachof the
examples.Thenin Section4, wewill show how wecanlearn
posedeformationsandidentity variationfrom thedata.

2. Character representation

In this section,we describeour representationfor shape,
skeleton,enveloping, and corrective enveloping. Our goal
is to choosea representationthat is expressive enoughto
capturethe phenomenawe aretrying to model,yet simple
enoughthatit canbelearnedautomaticallyfrom examples.

2.1. Shapeand skeleton

To begin with, wecreateaskeletonhierarchy to approximate
the humanbody's articulations.This skeletonS, shown in
Figure1, consistsof 30 rotationsand22 translations.These
transformationscomprisethe degreesof freedom(DOFs)
that describeany particularskeleton.We divide the skele-
tal DOFs into two groups.The �rst group is the skeleton
parameters,b, which consistof the DOFsthat areintrinsic
to an identity anddo not typically vary over time, suchas
the bonelengths.The secondgroup is the pose,q, which
consistsof theremainingDOFs,primarily thejoint angles.

Our skeletonis constrainedsuchthat mostof the trans-
lation elementsmustoccuralonga particularaxis,asillus-
tratedin Figure1. Theseconstraintsreduceambiguitiesin
anobservedskeletalstructure.We foundit necessaryto add
in a coupleof transformationsthatarenot typically usedby
animators:the carryinganglesof the elbow andknee.The
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Figure 1: Articulated skeletonhierarchy. The circles rep-
resentfree rotations, the bars representsingle-axisrota-
tions, and the lines representtranslations.The italicized
joint namesare intrinsic to a particular identity (theskele-
tonparameters),whereasthevaluesof theothertransforma-
tionsmayvarywith pose.

carryingangleis a �x ed rotationaboutthe axis that is per-
pendicularto the axesof elbow �e xion and twist. That is,
if the armsarelowered,the carryinganglebendsthe arms
outward from the body. This angleis intrinsic to an iden-
tity andcanbedifferenton the left andright sides.Without
thesedegreesof freedom,we wereunableto accurately�t
ourskeletonsto thescannedexamples.

We assignanindex j to eachskeletaltransformation,and
for a particularposeq andskeletonparametersb we denote
its coordinateframeasa4� 4 matrixM q;b; j .

We representthe shapeof a characterusing a triangle
mesh,M , of 7000 vertices,with vertex positionsvi . Our
meshis topologicallysymmetricalacrossthesagittalplane;
that is, eachpoint on theleft sidehasa correspondingpoint
on theright side.

2.2. Enveloping

Themostcommonapproachto envelopingis calledSkeleton
SubspaceDeformation(SSD)[MTT91], alsocalled“Linear
blendskinning” [MG03]. The essenceof SSDis that each
vertex vi onthebodyderivesa localpositionrelative to each
bonein somecanonicalpose,called the dresspose, Åq. A
weight si; j is associatedwith eachvertex and joint. Typi-
cally mostof the weightsarezero,sinceonly a coupleof
joints in�uence any particularvertex. To determinethever-
tex's position in a new pose,one determinesthat vertex's
new positionasif it wererigidly attachedto eachbone,and
takesa linearcombinationof theresultingpositions:

vi = å
j

si; jMq;b; jM
� 1
Åq;b; j Åvi (1)

Oursetof envelopingweightsis shown in Figure2b. Wewill
discusshow theseweightsaredeterminedin Section4.1.2,

Figure 3: ComparisonbetweenSSDenvelopingonly (left
in each pair), andSSDwith correctiveenveloping(right in
each pair). Noticetheincreasedrealismandcorrectedarti-
facts,particularly in theregionsindicatedbyarrows.

but for now wehighlightsomeof ourchoicesin selectingen-
velopingregions.We modeledmostof the free rotationsas
a singlequaternionjoint with 4 DOFs,however we split the
shoulderinto threeEulerangles.Ourobservationis thatele-
vationandabductionof theshoulderaffectsverticesnearthe
joint center, but twisting at the shoulderaboutthe humeral
axis causesa deformationthat is distributedalong the up-
per arm. Therefore,we createdone enveloping region for
elevation/abduction,andtwo for theshouldertwist: a 50%-
twist region at the top of the upperarm anda 100%-twist
region below. We split the forearmtwist in the sameway.
Splitting twist into multiple joints is often usedby anima-
tors, and is part of the techniquepublishedby Mohr and
Gleicher[MG03].

Theprimaryadvantageof SSDis its simplicity; in fact it
canbeeasilyimplementedin hardware[KJP02,JT05]. How-
ever, SSDsuffers from many problems,suchasseverevol-
umelossnearjoints,andin�ation in regionsfar from joints.
To a certainextent, theseartifactsmay be amelioratedby
manuallyadjustingtheenvelopingweights,however, dueto
the linear natureof the SSD, there is often no set of en-
velopingweightsthatcancorrecttheproblems.For this rea-
son,many alternativesto SSDhave beenproposed,suchas
free-formdeformationlattices[SK00], sphericalblendskin-
ning [Kv05], andvariousproprietarysolutions.

Despitethe improvementsoffered by thesemore com-
plex methods,ultimately no anatomically-naïve enveloping
model can suf�ce to model pose-dependentdeformations,
dueto thecomplex natureof muscles,bones,andothertis-
suesof the humanbody. Consequently, it will always be
necessaryto includecorrectionsto the underlyingenvelop-
ing model.Sincearbitrarycorrectionsarealwaysneeded,we
will baseourmethodon thesimplemethod:SSD.

2.3. Corr ectiveenveloping

To overcomethe limitations of SSD,an animatorwill typ-
ically �nd the bad-lookingposesand apply correctiveen-
veloping [RL99]. The goal of corrective enveloping is to
modify the dressshapesuchthat whenSSDis applied,the
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Figure 2: (a) Envelopingweightinitializations.We manuallysketch out thekinematicin�uenceregions(redin color plate)for
each joint. From left to right: neck, clavicle, shoulderelevation/abduction,50% shouldertwist, 100%shouldertwist, elbow
�exion, 50% forearmtwist, 100%forearmtwist, wrist �exion, back rotation,waist rotation,baserotation,hip rotation,knee
�exion,anklerotation.Theleft-sideregionsare determinedby symmetry. (b) Optimizedenvelopingweights.Here weshowthe
envelopingweightsfor each joint on a scalefromwhite(no in�uence) to red(full in�uence).Thegray regionsare outsidethe
initialization area and therefore havezero weight.(c) Pose-dependentdeformationregions.From left to right: neck rotation,
claviclerotation,shoulderrotation,elbow�exion,elbowtwist,spinerotation,waistrotation,hip rotation,knee�exion.

correctshapewill result. Each joint j will have a certain
numberof “key angles”r k wherethe dressshapehasbeen
edited.Then, for every vertex that is in�uenced by j, we
storeavectoroffsetk j ;k. Whenposingthecharacter, wead-
just the raw dressshapeÅv0 by addinga weightedcombina-
tion of theoffsetsfor thatvertex. Thus:

Åvi = Åv0
i + å

j
å
k

w j ;kk j ;k (2)

In theabove equation,j is summedover eachjoint that in-
�uencesvertex i, andk is summedover thenumberof keys
for joint j.

Variousalternativeshave beensuggestedfor how to de-
terminethe weightsw j ;k. Sloanet al. [SRC01] calculate
weightsusing radial basisfunctions(RBFs) on the exam-
ple poses.To createthe RBFs,we selecta setof joint an-
glesat which we will sampleeachjoint. We choseto pop-
ulateour setof samplinganglesby looking at a corpusof
posedskeletons(drawn from ourscandatabase,asdescribed
in Section4.1.1). We automaticallychoosezerorotationas
onesamplepoint,andthengreedilyaddin samplesfrom our
pool of poseswhich are as far as possiblefrom the other
samples.Weaddsamplesuntil all observedposesarewithin
0.2 radiansof somesample(or 0.3 radiansfor theshoulder
joint, whichwouldotherwisehave toomany samples).

Oncewe establishthe key angles,we canstatethat the
correcteddressshapefor any poseis foundby usingRBFs
to �nd the weightsw j ;k for eachjoint and key, and apply
Equation2. We thenapply regular envelopingto the mod-
i�ed dressshape.We summarizethis processas a func-
tion f (c;s;q), wherec includestheoriginal dressshape,the
skeletonparameters,andthedeformationoffsets.

Whenmultiple joints affect thesamepartof thesurface,
corrective envelopingbecomesdif�cult. Previous work has
sidesteppedthis problemby combiningmultiple joints into
onesamplespace,however thismeansthatall combinations
of joint valuesmustbesampled.Sincewewill eventuallybe
building alargemodelof identityvariation,wepreferto cre-
atea compactposemodelwith asfew samplesaspossible.

Therefore,we consideroverlappingin�uence regionsto be
separate,andattemptto learntheoverlappingeffectsof each
joint asif they wereindependent.

Anotherdistinctionof our approachis thatwe do not de-
mandthat the body shapeis actually observed at the key
angles,becauseit would benearlyimpossibleto forceeach
of oursubjectsto strikeaprecisesetof joint anglesfor scan-
ning.Instead,wewill takeadata-�tting approach,wherewe
attemptto �nd the offsetsat the key anglesthat, when in-
terpolated,would bestexplain thescannedposesthatwe do
observe.

We summarizeall of theinformationneededto put a par-
ticular individual into any poseusing corrective envelop-
ing into a single vector called the character vector, c. It
includesthe dressshapeÅv, skeletonparametersb, and the
pose-dependentdeformationoffsetsk. The key anglesand
envelopingweightsweconsiderto becommonto all people,
andarenot includedin thecharactervector.

Wedeferdiscussionof how thecharactervectorandskin-
ning weightsarelearneduntil Section4. The resultsof our
correctiveenvelopingmethodareshown in Figure3.

3. Matching

In orderto relatetheunstructuredrangescanmeshesto our
chosenmeshM , we must �rst apply a surfacematching
technique.That is, for eachscana, we would like to sum-

marizetheobservedshapeasacollectionof 3D vectorse(a)
i ,

wherei is avertex index in ourcanonicalsurfaceM .

The matching framework presentedby Allen et al.
[ACP03] is robust to missing surface data,and has been
shown to work well for matchinghumanbody scans.We
usedthis algorithmto matchthe scansthat werein a stan-
dard standingpose,however this matchingmethodis not
suitablewhenthescanandthetemplatearein extremelydif-
ferentposes(seeFigure4c). A key assumptionin this algo-
rithm is that the deformationin any local region is roughly
constant.However, if thereis a large posechange,suchas
a bentelbow, thenthis assumptionis violated.Ratherthan
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(a) (b) (c) (d) (e)

Figure 4: Meshmatching to a drasticallydifferentpose. (a)
Target mesh.(b) Standard template. (c) Match usingstan-
dard initialization. (d) Skinnedtemplate. (e) Match using
skinnedinitialization.

changingthe arm directionsuddenlyat the elbow, this ap-
proachprefersto graduallychangetheangleof thearmover
its length.

Therefore,in orderto matchour templateto scansin dif-
ferentposes,we mustput our templateinto theappropriate
poseusing enveloping.We �rst determinethe poseof the
scanusingthemarker positions(seeSection4.1.1), andap-
proximateenvelopingweights(seeSection4.1.2). We then
reposethetemplateandapplytheshape-matchingalgorithm
asusual,giving theresultshown in Figure4e.

4. Learning

Now thatwehaveaconsistentmeshrepresentationfor all of
theexamples,we presenta methodfor automaticallylearn-
ing the envelopingweightsandposedeformations.We be-
gin by establishingaprobabilisticmethodfor learningpose-
dependentdeformationsof a singlecharacter, given an ar-
bitrary set of examplesurfaces.It is critical to set up this
single-characterstep in a way that will generalizeto the
multi-characterproblemin Section4.2.

4.1. Learning a singlecharacter

Supposewe have na scans,which have beenmappedto
ourstandardsurfacerepresentationusingthealgorithmfrom
the previous section.We denotethe ith vertex of the ath

matchedexampleby e(a)
i .

Our goal in this sectionis to �nd the optimal character
vectorvalues,givenour exampledataset.We alsoestimate
theposeof eachof thescans,qa , andtheoptimalenvelop-
ing weightss. Using the corrective envelopingmethodde-
velopedin Section2.3, wecandeterminewherein 3D space

wewouldexpecte(a)
i to appearfor any particularvalueof c,

qa , ands. Wecall this reconstructedpoint v(a)
i :

v(a)
i = f (c;s;qa ) i (3)

Now we couchour problemin probabilisticterms.For any

observedpointe(a)
i , weexpectto �nd it nearbyv(a)

i , subject
to someobservationnoisen:

e(a)
i = v(a)

i + n n � N(0;s2
vI ) (4)

We assumethat the observation noise is drawn from an
isotropicGaussianwith variances2

v. Therefore,the proba-

bility of e(a)
i , givenaparticularsetof parametervaluesis:

p(e(a)
i jc;s;qa ) =

1
(2psv)3=2

exp
�

�
1

2s2
v

jj e(a)
i � v(a)

i jj 2
�

(5)
Armedwith theseprobabilities,we can�nd theoptimalpa-
rametersusing maximum a posteriori (MAP) estimation.
Theprobabilityof ourparametervaluesgiventhedatais:

P = p(c;s; f qagj f e(a)
i g) (6)

Here,theseton theright-handsideincludesall of our point
observationsfrom all scans.Using Bayes' rule, we canre-
expressEquation6 in termsof the posteriorbeliefs(Equa-
tion 5), multipliedby theprior probabilityof theparameters:

P =

"
na

Õ
a= 1

"
nv

Õ
i= 1

p(e(a)
i jc;s;qa )

##

p(c) p(s) p(f qag) (7)

The prior probability terms p(c) p(s) p(f qag) re�ect our
assumptionsaboutwhat parametervaluesare more likely,
withoutconsideringthedata.For example,wewouldexpect
theenvelopingweightsto vary smoothlyacrossthesurface;
asetof envelopingweightsthatcontainsasuddenchangein
weight is improbableconsideringthe �eshy natureof a hu-
man.(We will describethe form of theseprior termsin the
following subsections.)

To apply MAP estimation,we �nd the parametervalues
that minimize the negative log likelihood. We ignore the
termsthat do not dependon the parametervalues(e.g.,the
Gaussiannormalizationconstants),and split p(c) into the
productof theparametersthatmakeup thecharactervector:

� logP = nanv1:5log(2ps2
v) +

na

å
a= 1

nv

å
i= 1

1
2s2

v
jj e(a)

i � v(a)
i jj 2 �

logp( Åv) � logp(s) � logp(b; f qag) � logp(k) (8)

Due to the non-linearitiesin the skeletal transformations,
Equation8 is too complicatedto solve analytically. There-
fore, we use a standardoptimizationpackage[ZBLN97].
Becausethereare thousandsof variablesto optimize and
many local minima,it is critical to �nd a goodinitialization
for theparametervalues.

In thefollowing subsections,wewill addresseachparam-
etervalueindividually, describingthe initialization process
andalsotheprior usedfor eachparameter. We will address
theseparametersin theorderin which they mustbe initial-
ized:�rst thebonesb andposesqa in Section4.1.1, thenthe
envelopingweightss in Section4.1.2, thenthedressvertices
Åv in Section4.1.3, and�nally thepose-dependentdeforma-
tionsk in Section4.1.4. Afterwards,we will addressissues
of symmetry(Section4.1.5), and tuning the sigmavalues
(Section4.1.6).
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4.1.1. Initializing and prior on the skeletonparameters

Here we considerhow to initialize the bonesb and the
posesqa basedon our examples.We startwith the labelled
markersfrom eachscan.Thissetof markersis similarto mo-
tion capturedata,andcanbeoptimizedusinginversekine-
matics(IK) while alsooptimizingtheboneDOFs.(Onesuch
optimizationtechniqueis discussedin detailby Silaghietal.
[SPB� 98].)

Unlike motion capture,we have a relatively small setof
poses,sometimesasfew astwo, which is clearlyinsuf�cient
to determinetheskeletalparameters.Indeed,we foundthat
only for our subjectwho wasscannedin 69 posescouldwe
reliably determinea skeletonusing markers alone.There-
fore, we supplementIK with a heuristic techniquethat is
inspiredby how biomechanicistsestimateof joint centers
from surfacelandmarks.Using a poseexamplewhich is in
the standardCAESAR standingpose,we canestimatethe
joint centersasa linear function of landmarkpositionson
thebody(e.g.,thekneejoint centeris approximatedby the
midpointbetweentwo landmarkson eithersideof the leg).
Weusedthe69-poseexampleto �nd goodsurfacelandmark
positionsfor estimatingthe joint centers,andthen�nd the
correspondinglandmarkpoints on other individuals using
surfacematching(Section3).

We employ this heuristic in the form of a prior term,
p(b; f qag)) , to beincludedbothduringtheIK initialization,
andduringtheoptimizationof Equation8.

This prior statesthat for the CAESAR standingposesin
which we appliedour heuristictechniques,the joint centers
calculatedfrom our skeletonhierarchy shouldbe closeto

theheuristic-estimatedjoint centers,which we call h(a)
j . By

“closeto,” wemeanthedistancehasaGaussiandistribution
with mean0 andvariances2

b:

� logp(b; f qag) � å
j

1
2s2

b
jj h(a)

j � Mqa ;b; j [0 0 0 1]Tjj 2

(9)
In theaboveequation,a is theindex of theCAESARstand-
ing pose,and j is summedoverthejoint centersfoundby our
heuristicmethod.By usingthisprior, wecanavoid thenoise
andlocalminimathatIK wouldprovidewhenfew posesare
available.

4.1.2. Initializing and prior on the envelopingweights

Given a large enoughsampleof poses,we could, in prin-
ciple, learnall of the envelopingweightsautomatically, by
determiningwhich joint anglesaffect which surfacepoints.
However, evenwith a largenumberof examples,onecould
imagine that there could be some accidentalcorrelation
betweendistantbody parts that would introducespurious
weights.Therefore,we manuallylabel the approximatein-
�uenceregionsof eachjoint, in aone-timeprocess,asshown
in Figure2a.Thelabellingsidentify themaximumextentof
eachjoint's in�uence. Outsideeachjoint's in�uence region,
its correspondingenvelopingweightmustbezero.

To obtaina reasonableenvelopingresult,we needto cre-
ateasmoothtransitionbetweenthein�uenceregions.Wedo
so by introducinga prior on the envelopingweights,based
onthesquaredumbrellaoperatorU2(si) [KCVS98]. To min-
imize the curvatureof our skinningweight function (in the
meshdomain),we introducea zero-centeredGaussianterm
for eachweight-curvatureestimatewith variances 2

s:

� logp(s) �
nv

å
i= 1

1
2s2

s
jjU2(si)jj

2 (10)

Our initial valuesfor the envelopingweightsare found by
startingwith the weights in Figure 2a, normalizing them,
andthenminimizing this prior term only (ignoring the ac-
tualdata).Theresultingenvelopingweightsareverysimilar
to thoseshown in Figure2b.

4.1.3. Initializing and prior on the dressshape

Wecantrivially initialize thedressshapeby usingoneof our
matchingresults(e.g.,for theCAESARstandingpose),and
determinethedresslocationof eachvertex usingthe initial
skeletonsandenvelopingweights.

Wechooseto useauniformprior for thedressshape(i.e.,
all shapesareequally likely in the absenseof data),asour
initialization bringsus quite closeto the correctvalue,and
sotherewasnoneedfor additionalregularization.Therefore,
logp( Åv) is aconstantandcanbedroppedfrom Equation8.

4.1.4. Initialization and prior on the pose-dependent
deformations

We initialize the pose-dependentdeformationoffsetsto be
zero,which is equivalent to using SSD without corrective
enveloping.

Unlike thedressvertices,we will introducea prior on the
pose-dependentdeformationoffsets.As mentionedin the
previous subsection,we could reliably obtaina reasonable
dressshapefrom the standingCAESAR pose.This is be-
causewe choseto trust all of the data in this pose,even
wherethe scannedshapehadholes,becauseour matching
algorithmworks quite well in this pose.However, in other
poses,we areusinga skinnedtemplatewhich hasall of the
badartifactssuchasvolumelossanda rubberyappearance.
Moreover, the otherposestendto have moreocclusionsor
grazingangleviews, resultingin very largeholes.Sincewe
do not have gooddatain theseregions,we do not include

thoseexamplepointse(a)
i in Equation8. In fact, we scale

theweightof eachobservationin accordancewith thescan-
ner con�dencevalue,so that less-certainobservationscon-
tributelessto ourmodel.

Thissolutionis intuitively reasonable:wewantto �t more
closelyto gooddatathanbad.However, it causesa problem
nearthe boundariesof goodandmissingdata.Supposewe
notice that a bicepbulges,but thereis a small hole in the
�e xed arm scan.Our systemwould assumethat the bicep
doesnot bulge in thehole,sincethereis no datato indicate
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any change.This runscounterto our intuition that the de-
formationsare locally consistent,that is, shapechangesat
nearbypointsshouldbeverysimilar.

To include this intuition in our model, we supply the
following prior on the pose-dependentdeformationoffsets,
whichappliesto all neighboringverticesin themesh:

� logp(k) �
nj

å
j

å
f i1;i2jf vi1 ;vi2g2 edges(M )g

1
2s2

k
jj k i1; j � k i2; j jj

2

(11)

This prior hasanadditionalbene�t. We specifyan in�u-
enceregion for eachpose-dependentdeformationoffset,as
shown in Figure2c. We thenforceall offsetsoutsidethein-
�uence region to bezero.Our regularizationtermwill then
causea smoothfall-off at theboundaryof the in�uence re-
gion. Without this regularization,we would observe seams
at theboundaries,wherespuriouspose-dependentdeforma-
tionsdevelopedneartheboundary.

4.1.5. Symmetry

By andlarge,humansarebilaterallysymmetricalacrossthe
sagittalplane.We exploit this fact in our learningstepin
orderto reducethenumberof variablesin our modelby ap-
proximatelyhalf, by implicitly statingthat the left-sidepo-
sitionsanddisplacementsarethemirror-imageof theright-
sidevalues.We alsoimplicitly make the left andright bone
DOFsthesame.We make a concessionto asymmetrywhen
it comesto carryingangles,andallow thoseto be unequal.
Thereasonis basedon thequitehigh variationof thesean-
gles,and the high mismatchthat would arisefrom not re-
spectingthem.

4.1.6. Estimating variances

So far, we have introducedmany variancevalueswhich
we assumehave beenprovided manually:s 2

v, s2
b, s2

s, and
s2

k . We madeinitial estimatefor thesevaluesof (1 mm)2,
(1 mm)2, (0:01)2, and (1 cm)2 respectively. However, we
do not want to have to tweakall of theseparametersto get
theidealvalues.

Instead,after runningour optimizationfor several itera-
tions,we re-estimatetheseparametersby optimizingEqua-
tion 8 in closedform for the bestsigmavalues,and then
alternatebackto themainoptimization.(This techniquehas
beenappliedto a similar learningproblemby Torresaniand
Hertzmann[TH04].) Eachof theaforementionedsigmaval-
uesarebasedonacollectionof Gaussiandistributions.If the
numberof Gaussiansinvolved is n, the dimensionof each
vectoris d, andthedistancefrom eachpoint to theGaussian
centeris ei , thentheoptimalsigmavalueis:

s2 = (
n

å
i

jj ei jj
2)=nd (12)

4.2. Learning all identities

Next, we considertheproblemof learningvariationin both
poseandbodyshape.Thanksto theformulationof thechar-
actervectorc we now have a convenientway to represent
this variation.Recall that the charactervectorencapsulates
all of theinformationneededto reconstructaparticulariden-
tity in any pose,implicitly storing suchparametersas the
individual's height,girth, andmuscletone.Previous work,
suchasAllen etal. [ACP03] andSeoetal. [SCMT03], has
characterizedthe spaceof all humanbody shapesasa dis-
tribution within all shape-vectors.Thekey ideahereis that
insteadof �nding a distribution over shapevectors,we will
�nd adistributionovercharactervectors.

In principle,if wehadalargenumberof charactervectors,
for example,if wehadcapturedhundredsof individualseach
in many posesandappliedthetechniqueof Section4.1, then
we could run PCA on thosecharactervectorsandhave our
model.However, this approachwould requirea very large
numberof scans,whichwouldbeveryexpensive to acquire,
store,andprocess.It is muchmoreappealingif we canjust
usewhatever datasampleswe aregivento build our model.
For instance,if wehavealot of posedatafor onebodyshape,
weshouldbeableto estimatetheposevariationfor another,
similarbodyshape,evenif we justhaveoneor two scansof
thatperson.

4.2.1. Learning character vectors

To modelall characterdistributions,weassumethatall char-
actervectorsaredrawn from a latentvariabledistributionof
theform: c(b) = Wx + Åc, wherex hasaGaussiandistribution
with unit covariance.We want to solve for the components
W and the meancharactervector Åc. Unlike PCA, we will
not requirethat thecomponentsareorthonormal.If we had
a large setof charactervectors,thenwe could useconven-
tionalPCA.Oneproblemwith thisapproachis thatdifferent
partsof thecharactervectorhavedifferentscales(depending
onwhetherthey arevertex positions,angles,or offsets),and
so our analysiswill be biased.A moreseriousissueis that
wecannotactuallyobservethecharactervectorsdirectly;we
canonly observe the shapesthat they producein a particu-
lar pose.In fact, if we only seean individual in a coupleof
poses,wemaynothaveenoughinformationto reliablyknow
any elementsof c.

Therefore,weproposethefollowing generativemodelfor
our vertex observations,basedon our corrective enveloping
function f :

e(a;b)
i = f (Wxb + Åc;s;qa ) i + n; xb � N(0; I ); n � N(0;s2

vI )
(13)

We model the observation noiseas an isotropic Gaussian
variablen. Notice that Equation13 is exactly the sameas
Equation4 in the previous subsection,exceptthat we have
replacedc with Wxb + Åc. That is, we now usea character
vectorthat we have reconstructedfrom the componentsin-
steadof usinga �x edcharactervector.
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our resultno corrective enveloping single-person
corrective enveloping

Figure 5: Resultsof meshesgeneratedwith our hybrid modelare in the middlecolumn.Each of theseindividualswasonly
observedin a standard standingand seatedpose, and thenput into a novel poseusingour method.We compare with using
envelopingalone, in the left column.In the right column,weshowthe resultof transferringjust onetypical person's correc-
tive envelopingonto the new character. Our learnedmodelis able to generate correctionsthat are more suitableto the new
individuals' bodytype. Thecolor-tinteddetails(seecolor plate)compareour resultwith theleft andright alternatives.

Our generative model is basedon the ProbabilisticPrin-
cipal ComponentAnalysis(PPCA)algorithmintroducedby
TippingandBishop[TB99] andby Roweis[Row98]. To �nd
thebestW andÅc valuesthatexplainourdata,wecouldapply
the Expectation-Maximization(EM) algorithm [DLR77],
which alternatesbetweenestimatinga distribution for each
xb, andthen�nding themaximumexpectedlikelihoodval-
uesof W and Åc. However, unlike PPCA,we areobserving
our datathroughthe lensof corrective enveloping,a com-
plex and non-linearprocess.Therefore,the estimateddis-
tributions for xb will not be Gaussian,making a full EM
optimization very dif�cult. Instead,we alternatebetween
optimizing for a �x ed valueof eachxb, and thenoptimiz-
ing W and Åc using the MAP approachintroducedin Sec-
tion 4.1. NealandHinton[NH98] referto thisapproximation
as a “winner-take-all” variant of EM, and suggestthat al-
thoughtheguaranteesof convergencethatEM endows may
no longerapply, this approachwill make progresstowards
theminimum.

4.2.2. Initializing latent variables

In PPCA,thelatentvariablesxb canbeinitializedrandomly,
dueto theconvergenceguarantees.However, sinceouropti-
mizationis lessrobustthanthefull EM approach,wewould
dowell to useagoodinitialization.Theboneparametersare
a goodchoiceto guidethis initialization,becausetheskele-
tonsarevery importantto obtaininganaccurate�t, andthey
canbeestimatedwithout runningour full optimization.We

Variable #
DressshapeÅv 106,920
BoneDOFsb 210
Pose-dependentdeformationsk 314,220
PoseDOFsq 12,561
Skinningweightss 17,820
Reconstructionweightsx 450

Table 1: Summaryof the total numberof variablesin our
optimizationfor all scansandcomponents.

�nd theboneparametersb for eachindividual in ourdataset
(Section4.1.1), andrun conventionalPCA on theseparam-
eters.We thenusethe reconstructionweightsprovided by
PCAto initialize eachxb.

4.2.3. Summary of optimization steps

To model all posesfor all identities,we needto solve for
a lot of variables(seeTable 1), and take careto optimize
themin thecorrectorder. In thissectionwewill describeour
procedurefor learningall variablesfrom therangescans.

We begin with the 69-posedataset,andestimateb and
q from the markers (§4.1.1). We then initialize the skin-
ning weightssmoothly(§4.1.2), and matchall of the sur-
facesusingtheskinninginitialization (§3). We thenfurther
optimizeq and Åv, thenadds andb, and �nally includek.
When the optimization starts to converge, we updatethe
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variances(§4.1.6) andthenoptimize further. This givesus
asinglecharactervectorto startwith.

To move on to the multi-identity problem,we estimate
skeletonsfor the full dataset(§4.1.1), anduseour learned
skinningmodel to initialize the surfacematching(§3). We
alsorun PCA on theboneDOFsto initialize x (§4.2.2). We
�rst optimizefor q andb usingonly theskeletonprior, and
theninitialize therestof Åc with thesingle-personvariables.
Now we canoptimizeall variablesas in the single-person
case,but we alsoalternatewith optimizing for x. The end-
to-endlearningprocesstakesaboutadayto run.

Wechoseto use9 components(plusthemeanÅc) to repre-
sentbodyshape.However, we only have six pose-densein-
dividuals.Therefore,it is unreasonableto expectto beable
to learn9 componentsfor k. Indeed,even with six compo-
nents,wefoundthattherewasseriousover�tting. Therefore,
we reducedthe numberof componentsfor k to just 3 (i.e.,
theother6 charactervectorcomponentswill have k thatare
forcedto bezero).By doingso,weeliminateover�tting and
force our optimizationto �nd a correlationbetweenk and
bodyshape.

5. Results

The overall root-mean-squared(RMS) reconstructionerror
of our learnedmodelwith regard to the training set is 4.9
mm on eachvertex. We also�t our modelto � ve additional
scansof subjectswho werenot partof the trainingset,and
obtainedanRMS errorof 8.1mm.Someof this erroris due
to thedif�culty in determiningtheposeandPCAweightsof
thesenovel characters(which is donethroughanoptimiza-
tion process).

Figure3 shows our learnedcorrective envelopingmodel
appliedto two of the charactersin our multi-posetraining
set.Thenovel posesweredrawn from a motioncapturese-
quence.Noticethatthe“joint-collapse”artifactsof pureen-
velopingarecompensatedfor, andanatomicaleffectssuch
asthe pointinessof the elbow, andthe shapechangeof the
largerman's upperarmareaccountedfor.

In Figure5, we demonstrateadditionalresultswhereour
modelis appliedto charactersin theCAESARset(whowere
only observedin two poses),andnew posesareapplied.Our
resultsaremuchbetterthat skinningappliedalone:notice
therubberylook in thearmsandlegs,andthe lack of mus-
cle bulging in the tricepsandpectoralmuscles.In addition,
we claim thata singlepose-deformationmodelis not suf�-
cient.To prove this claim, we alsocompareour resultwith
usingcorrective envelopinglearnedfrom just a single,aver-
ageindividual. Our modelis ableto automaticallygenerate
correctiveenvelopingthatis particularto abodytype.

Usingour latentvariablemodel,we canperformanalysis
taskssimilar to previous work [BV99, ACP03]. For exam-
ple, we canlearna trendbetweenrecordedattributesabout
eachexampleandthelatentvariables.Figure6 demonstrates

Figure 6: Editing body weight.We edit the weight of one
of the subjects(secondfrom the left) usingtrendsfrom the
population.Theheightis keptconstant.Theinsetsshowthe
re-posedleft armwithoutcorrectiveenvelopingfor compar-
ison.

a learnedtrendbetweenheight,weight,andbodyshape.We
areableto edit theweightof oneof thesubjects,while con-
trolling hisheightindependently.

6. Conclusion

Wehavepresentedanalgorithmfor learningcharactermod-
els from observationsof humanbodyshape.Our algorithm
is robustin thefaceof sparse,irregular, andincompletedata.
By incorporatingother informationbeyond the baseshape
in our latentvariablemodel,we have createda fundamen-
tally more expressive model for modelingthe interdepen-
denceof pose-dependentdeformationandindividual varia-
tion. We have shown how our model is useful for synthe-
sizingandeditinganimatedcharacters;in thefuture,we en-
vision other applications,e.g.,providing a shapeprior for
computer-visionandrecognitionapplications.

A primaryadvantageof our approachis speed.Our syn-
thesizedmodelscanbeposedby evaluatinga few RBF val-
ues,thentakinga linear interpolationof keys, andthenap-
ply standardenveloping.Our unoptimizedsoftware imple-
mentationcan generatea posedshapein just 13 ms on a
2.8 GHz PC. In contrast,methodsbasedon deformation
transfer[ASK� 05] takearoundonesecondperbody.

Ourmethodcouldbefurtherimprovedby includingmore
data.Currently, our 16-posedatasetsdo not samplesome
regions of pose-spacevery well (e.g., there are very few
raisedarmsandbentelbows). This causessomeproblems
in poorly sampledpartsof pose-andidentity-space;notice,
for instance,shoulderin�ation for certaincharactersin the
�nal part of the accompanying video. In addition,it would
beniceto samplenon-poserelatedDOFs,suchasbreathing
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andmuscleload.Of coursewith a suitablefemaledataset,
wecouldalsobuild ananimatablefemalemodel.

Onelimitation of ourapproachis thatsomeposesarevery
dif�cult to capture,becauseof occlusions,or becausethey
aredif�cult to hold for ascanner. Self-collisionsin thebody
areparticularlytroublesome;not only canthey not be cap-
tured,but they arevery hardto modelusinga smoothfunc-
tion suchasRBFs,becauseself-collisionscauseasharpdis-
continuity in the shape.To addresssuchissues,it may be
necessaryto eventuallycoupleourmethodwith asimulation
framework. Sucha framework would alsobeableto model
dynamicphenomena,suchasjiggling �esh, thatwe areun-
ableto capture.
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Face transferwith multilinear models. ACM Transactionson
Graphics(ACM SIGGRAPH2005)24, 3 (2005),426–433.

[WP02] WANG X. C., PHILLIPS C.: Multi-weight enveloping:
Least-squaresapproximationtechniquesfor skin animation. In
Proceedingsof the2002ACM SIGGRAPHSymposiumon Com-
puterAnimation(2002),pp.129–138.

[ZBLN97] ZHU C., BYRD R. H., LU P., NOCEDAL J.: Al-
gorithm 778. L-BFGS-B: Fortran subroutinesfor Large-Scale
boundconstrainedoptimization. ACM Transactionson Mathe-
maticalSoftware23, 4 (Dec.1997),550–560.

c
 TheEurographicsAssociation2006.


