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Abstract

We present a method for learning a model of human body shape variation from a corpus of 3D range scans. Our
model is the first to capture both identity-dependent and pose-dependent shape variation in a correlated fashion,
enabling creation of a variety of virtual human characters with realistic and non-linear body deformations that
are customized to the individual. Our learning method is robust to irregular sampling in pose-space and identity-
space, and also to missing surface data in the examples. Our synthesized character models are based on standard
skinning techniques and can be rendered in real time.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Curve, surface, solid and
object modeling; I.3.7 [Computer Graphics]: Animation

1. Introduction

One of the main challenges in creating animated human
characters for computer graphics is the problem of modeling
realistic body shapes. Manually modeling a high-resolution
shape that will pass as human is very difficult. Furthermore,
a statically-modelled shape must be given a “skeleton” and
rigged for animation, so that it can be put into different
poses. This rigging process includes enveloping, where the
initial shape is deformed to follow the underlying skeleton,
and then modeling further deformations to account for mus-
cle bulges, bones that slide beneath the skin, dimples, and
other changing aspects of the underlying tissues. These tasks
must be repeated for each different character (“identity”) that
is modelled.

To avoid this manual effort, it has become popular to use
data capture techniques such as 3D scanning to create hu-
man models. However, previous approaches have many re-
strictions, such as requiring complete or near-complete sur-
face examples, or examples where each joint is moved in-
dependently at precise angles (such examples must be made
by an artist, since real humans cannot meet such stringent

† e-mail: allen@cs.washington.edu, curless@cs.washington.edu,
zoran@cs.washington.edu, hertzman@dgp.toronto.edu

constraints). Moreover, no existing model is able to capture
the relationship between different identities and their dif-
ferent pose-dependent deformations. Below we will discuss
some previous “example-based” approaches, and introduce
our novel approach.

1.1. Related work

We begin by considering approaches for modeling pose-
dependent deformations, such as muscle bulges and other
anatomical effects. Of course, one option is to directly model
the anatomy, as in the work of Scheepers et al. [SPCM97]
and many others. The anatomical approach is very promising
and flexible, however it requires a lot of manual modeling,
and is not suitable for real-time interactions with multiple
characters due to the overhead of physical simulation.

In this paper we will focus on example-based methods,
where the anatomical effects arise from a generic shape-
modifying function that is fit to examples. One approach is
to learn a linear function of the joint angle that modifies the
shape. For example, the multi-weight embedding of Wang
and Philips [WP02] uses a set of per-element weights on
the coordinate matrices of each joint to alter the final shape.
Mohr and Gleicher [MG03] add extra joints to the skeleton
to modulate the shape as a function of pose. Anguelov et al.
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[ASK∗05] learn a linear function that is applied within a de-
formation transfer framework.

For modeling deformations that are non-linear functions
of pose, scattered-data interpolation techniques are often
used. For example, Lewis et al. [LCF00], Sloan et al.
[SRC01], and Kry et al. [KJP02] use radial basis functions
to create a function of the joint angles that interpolates a set
of example shapes. Allen et al. [ACP02] use a similar k-
nearest-neighbor interpolation approach.

Scattered-data interpolation is useful when the underlying
parameters of variation are exposed (e.g., joint angles), but
when considering the problem of modeling an entire popula-
tion of shapes (e.g., all human faces or bodies), it is unclear
what the underlying parameters should be. For this reason,
latent variable models are often employed, such as Principal
Component Analysis (PCA). These techniques model shape
variation as a projection onto a low dimensional subspace
of shape space. The coordinates of each shape in this sub-
space are the latent variables. PCA has been applied to char-
acter modeling problems, such as analyzing variation among
faces [BV99], or among bodies [ACP03, SCMT03].

The next logical step is to have a combined model that
can generate any identity in any pose. Sloan et al. [SRC01]
extend their scattered-data interpolation method to include
identity by adding parameter values such as “male-female”.
However, their approach risks conflating these two axes if
the examples are not precisely spaced in parameter-space.
For example, it is possible that bending the elbow could
make the character become more female.

Another combined model is the SCAPE approach of
Anguelov et al. [ASK∗05]. SCAPE learns pose-deformation
as a completely separate phenomenon from their PCA-based
identity-variation model, and then combines the two modal-
ities when a new shape is synthesized. This model is very
powerful, but it cannot capture the correlation between the
two modes. For example, when a muscular person bends
their arm, the shape change will be the same as when a very
thin person bends their arm.

Multi-linear approaches, such as Vlasic et al. [VBPP05]
use multi-linear algebra to extend latent variable techniques
to handle multiple modalities, such as the identity, expres-
sion, and viseme of a face. In principle, the same approach
could be applied to bodies. However, sampling body poses is
much harder than sampling expressions, because many more
samples are needed, and it is difficult to control exactly what
poses are captured (e.g., it is hard to request that a subject
should achieve a precise shoulder rotation angle). In addi-
tion, body deformations are very localized (moving one joint
affects only a few of the vertices of the body), which would
be inefficiently represented as full tensors.

1.2. Overview

Our novel approach is to take the best features of scattered-
data interpolation and latent variable models, and combine

them into a hybrid model. Rather than building a latent vari-
able model of just shape, we will build a latent variable
model that includes the full set of interpolation keys needed
to generate a model in any pose. Using this approach, we
encapsulate the correlation between pose and identity, while
keeping these two modalities from being conflated. We will
present a method for learning our model given an arbitrary
set of examples of different individuals in different poses. In
addition, unlike previous methods, our system can incorpo-
rate incomplete surfaces, where only part of the full surface
is observed.

To train our model we require a large corpus of 3D data
that covers the range of identity and pose variation. We
used 44 subjects from the CAESAR project (see Allen et al.
[ACP03]) who were captured in a standard standing and
seated pose, each with 74 landmark positions labelled. For
an additional 5 subjects, we repeated the CAESAR scanning
process, but with a total of 16 different poses. These five sub-
jects were selected to cover a variety of height and weight
combinations. Finally, we included scans of a single person
in 69 poses (as described by Anguelov et al. [ASK∗05]).

The contributions of this paper are broken into three parts.
First, in Section 2 we describe the enveloping problem, and
introduce our modifications for corrective enveloping. In
Section 3, we will discuss the matching problem, where a
consistent shape representation is generated for each of the
examples. Then in Section 4, we will show how we can learn
pose deformations and identity variation from the data.

2. Character representation

In this section, we describe our representation for shape,
skeleton, enveloping, and corrective enveloping. Our goal
is to choose a representation that is expressive enough to
capture the phenomena we are trying to model, yet simple
enough that it can be learned automatically from examples.

2.1. Shape and skeleton

To begin with, we create a skeleton hierarchy to approximate
the human body’s articulations. This skeleton S, shown in
Figure 1, consists of 30 rotations and 22 translations. These
transformations comprise the degrees of freedom (DOFs)
that describe any particular skeleton. We divide the skele-
tal DOFs into two groups. The first group is the skeleton
parameters, b, which consist of the DOFs that are intrinsic
to an identity and do not typically vary over time, such as
the bone lengths. The second group is the pose, q, which
consists of the remaining DOFs, primarily the joint angles.

Our skeleton is constrained such that most of the trans-
lation elements must occur along a particular axis, as illus-
trated in Figure 1. These constraints reduce ambiguities in
an observed skeletal structure. We found it necessary to add
in a couple of transformations that are not typically used by
animators: the carrying angles of the elbow and knee. The
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Figure 1: Articulated skeleton hierarchy. The circles rep-
resent free rotations, the bars represent single-axis rota-
tions, and the lines represent translations. The italicized
joint names are intrinsic to a particular identity (the skele-
ton parameters), whereas the values of the other transforma-
tions may vary with pose.

carrying angle is a fixed rotation about the axis that is per-
pendicular to the axes of elbow flexion and twist. That is,
if the arms are lowered, the carrying angle bends the arms
outward from the body. This angle is intrinsic to an iden-
tity and can be different on the left and right sides. Without
these degrees of freedom, we were unable to accurately fit
our skeletons to the scanned examples.

We assign an index j to each skeletal transformation, and
for a particular pose q and skeleton parameters b we denote
its coordinate frame as a 4×4 matrix Mq,b, j .

We represent the shape of a character using a triangle
mesh, M, of 7000 vertices, with vertex positions vi. Our
mesh is topologically symmetrical across the sagittal plane;
that is, each point on the left side has a corresponding point
on the right side.

2.2. Enveloping

The most common approach to enveloping is called Skeleton
Subspace Deformation (SSD) [MTT91], also called “Linear
blend skinning” [MG03]. The essence of SSD is that each
vertex vi on the body derives a local position relative to each
bone in some canonical pose, called the dress pose, q̄. A
weight si, j is associated with each vertex and joint. Typi-
cally most of the weights are zero, since only a couple of
joints influence any particular vertex. To determine the ver-
tex’s position in a new pose, one determines that vertex’s
new position as if it were rigidly attached to each bone, and
takes a linear combination of the resulting positions:

vi = ∑
j

si, jMq,b, jM
−1
q̄,b, j v̄i (1)

Our set of enveloping weights is shown in Figure 2b. We will
discuss how these weights are determined in Section 4.1.2,

Figure 3: Comparison between SSD enveloping only (left
in each pair), and SSD with corrective enveloping (right in
each pair). Notice the increased realism and corrected arti-
facts, particularly in the regions indicated by arrows.

but for now we highlight some of our choices in selecting en-
veloping regions. We modeled most of the free rotations as
a single quaternion joint with 4 DOFs, however we split the
shoulder into three Euler angles. Our observation is that ele-
vation and abduction of the shoulder affects vertices near the
joint center, but twisting at the shoulder about the humeral
axis causes a deformation that is distributed along the up-
per arm. Therefore, we created one enveloping region for
elevation/abduction, and two for the shoulder twist: a 50%-
twist region at the top of the upper arm and a 100%-twist
region below. We split the forearm twist in the same way.
Splitting twist into multiple joints is often used by anima-
tors, and is part of the technique published by Mohr and
Gleicher [MG03].

The primary advantage of SSD is its simplicity; in fact it
can be easily implemented in hardware [KJP02,JT05]. How-
ever, SSD suffers from many problems, such as severe vol-
ume loss near joints, and inflation in regions far from joints.
To a certain extent, these artifacts may be ameliorated by
manually adjusting the enveloping weights, however, due to
the linear nature of the SSD, there is often no set of en-
veloping weights that can correct the problems. For this rea-
son, many alternatives to SSD have been proposed, such as
free-form deformation lattices [SK00], spherical blend skin-
ning [Kv05], and various proprietary solutions.

Despite the improvements offered by these more com-
plex methods, ultimately no anatomically-naïve enveloping
model can suffice to model pose-dependent deformations,
due to the complex nature of muscles, bones, and other tis-
sues of the human body. Consequently, it will always be
necessary to include corrections to the underlying envelop-
ing model. Since arbitrary corrections are always needed, we
will base our method on the simple method: SSD.

2.3. Corrective enveloping

To overcome the limitations of SSD, an animator will typ-
ically find the bad-looking poses and apply corrective en-
veloping [RL99]. The goal of corrective enveloping is to
modify the dress shape such that when SSD is applied, the
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Figure 2: (a) Enveloping weight initializations. We manually sketch out the kinematic influence regions (red in color plate) for
each joint. From left to right: neck, clavicle, shoulder elevation/abduction, 50% shoulder twist, 100% shoulder twist, elbow
flexion, 50% forearm twist, 100% forearm twist, wrist flexion, back rotation, waist rotation, base rotation, hip rotation, knee
flexion, ankle rotation. The left-side regions are determined by symmetry. (b) Optimized enveloping weights. Here we show the
enveloping weights for each joint on a scale from white (no influence) to red (full influence). The gray regions are outside the
initialization area and therefore have zero weight. (c) Pose-dependent deformation regions. From left to right: neck rotation,
clavicle rotation, shoulder rotation, elbow flexion, elbow twist, spine rotation, waist rotation, hip rotation, knee flexion.

correct shape will result. Each joint j will have a certain
number of “key angles” rk where the dress shape has been
edited. Then, for every vertex that is influenced by j, we
store a vector offset k j,k. When posing the character, we ad-
just the raw dress shape v̄′ by adding a weighted combina-
tion of the offsets for that vertex. Thus:

v̄i = v̄′i +∑
j
∑
k

ω j,kk j,k (2)

In the above equation, j is summed over each joint that in-
fluences vertex i, and k is summed over the number of keys
for joint j.

Various alternatives have been suggested for how to de-
termine the weights ω j,k. Sloan et al. [SRC01] calculate
weights using radial basis functions (RBFs) on the exam-
ple poses. To create the RBFs, we select a set of joint an-
gles at which we will sample each joint. We chose to pop-
ulate our set of sampling angles by looking at a corpus of
posed skeletons (drawn from our scan database, as described
in Section 4.1.1). We automatically choose zero rotation as
one sample point, and then greedily add in samples from our
pool of poses which are as far as possible from the other
samples. We add samples until all observed poses are within
0.2 radians of some sample (or 0.3 radians for the shoulder
joint, which would otherwise have too many samples).

Once we establish the key angles, we can state that the
corrected dress shape for any pose is found by using RBFs
to find the weights ω j,k for each joint and key, and apply
Equation 2. We then apply regular enveloping to the mod-
ified dress shape. We summarize this process as a func-
tion f (c,s,q), where c includes the original dress shape, the
skeleton parameters, and the deformation offsets.

When multiple joints affect the same part of the surface,
corrective enveloping becomes difficult. Previous work has
sidestepped this problem by combining multiple joints into
one sample space, however this means that all combinations
of joint values must be sampled. Since we will eventually be
building a large model of identity variation, we prefer to cre-
ate a compact pose model with as few samples as possible.

Therefore, we consider overlapping influence regions to be
separate, and attempt to learn the overlapping effects of each
joint as if they were independent.

Another distinction of our approach is that we do not de-
mand that the body shape is actually observed at the key
angles, because it would be nearly impossible to force each
of our subjects to strike a precise set of joint angles for scan-
ning. Instead, we will take a data-fitting approach, where we
attempt to find the offsets at the key angles that, when in-
terpolated, would best explain the scanned poses that we do
observe.

We summarize all of the information needed to put a par-
ticular individual into any pose using corrective envelop-
ing into a single vector called the character vector, c. It
includes the dress shape v̄, skeleton parameters b, and the
pose-dependent deformation offsets k. The key angles and
enveloping weights we consider to be common to all people,
and are not included in the character vector.

We defer discussion of how the character vector and skin-
ning weights are learned until Section 4. The results of our
corrective enveloping method are shown in Figure 3.

3. Matching

In order to relate the unstructured range scan meshes to our
chosen mesh M, we must first apply a surface matching
technique. That is, for each scan α, we would like to sum-

marize the observed shape as a collection of 3D vectors e(α)
i ,

where i is a vertex index in our canonical surface M.

The matching framework presented by Allen et al.
[ACP03] is robust to missing surface data, and has been
shown to work well for matching human body scans. We
used this algorithm to match the scans that were in a stan-
dard standing pose, however this matching method is not
suitable when the scan and the template are in extremely dif-
ferent poses (see Figure 4c). A key assumption in this algo-
rithm is that the deformation in any local region is roughly
constant. However, if there is a large pose change, such as
a bent elbow, then this assumption is violated. Rather than
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(a) (b) (c) (d) (e)

Figure 4: Mesh matching to a drastically different pose. (a)
Target mesh. (b) Standard template. (c) Match using stan-
dard initialization. (d) Skinned template. (e) Match using
skinned initialization.

changing the arm direction suddenly at the elbow, this ap-
proach prefers to gradually change the angle of the arm over
its length.

Therefore, in order to match our template to scans in dif-
ferent poses, we must put our template into the appropriate
pose using enveloping. We first determine the pose of the
scan using the marker positions (see Section 4.1.1), and ap-
proximate enveloping weights (see Section 4.1.2). We then
repose the template and apply the shape-matching algorithm
as usual, giving the result shown in Figure 4e.

4. Learning

Now that we have a consistent mesh representation for all of
the examples, we present a method for automatically learn-
ing the enveloping weights and pose deformations. We be-
gin by establishing a probabilistic method for learning pose-
dependent deformations of a single character, given an ar-
bitrary set of example surfaces. It is critical to set up this
single-character step in a way that will generalize to the
multi-character problem in Section 4.2.

4.1. Learning a single character

Suppose we have nα scans, which have been mapped to
our standard surface representation using the algorithm from

the previous section. We denote the ith vertex of the αth

matched example by e(α)
i .

Our goal in this section is to find the optimal character
vector values, given our example data set. We also estimate
the pose of each of the scans, qα, and the optimal envelop-
ing weights s. Using the corrective enveloping method de-
veloped in Section 2.3, we can determine where in 3D space

we would expect e(α)
i to appear for any particular value of c,

qα, and s. We call this reconstructed point v(α)
i :

v(α)
i = f (c,s,qα)i (3)

Now we couch our problem in probabilistic terms. For any

observed point e(α)
i , we expect to find it nearby v(α)

i , subject
to some observation noise ν:

e(α)
i = v(α)

i +ν ν ∼ N(0,σ2
vI) (4)

We assume that the observation noise is drawn from an
isotropic Gaussian with variance σ2

v. Therefore, the proba-

bility of e(α)
i , given a particular set of parameter values is:

p(e(α)
i |c,s,qα) =

1

(2πσv)3/2
exp

(

−
1

2σ2
v
||e(α)

i −v(α)
i ||2

)

(5)
Armed with these probabilities, we can find the optimal pa-
rameters using maximum a posteriori (MAP) estimation.
The probability of our parameter values given the data is:

P = p(c,s,{qα} | {e(α)
i }) (6)

Here, the set on the right-hand side includes all of our point
observations from all scans. Using Bayes’ rule, we can re-
express Equation 6 in terms of the posterior beliefs (Equa-
tion 5), multiplied by the prior probability of the parameters:

P =

[

nα

∏
α=1

[

nv

∏
i=1

p(e(α)
i |c,s,qα)

]]

p(c) p(s) p({qα}) (7)

The prior probability terms p(c) p(s) p({qα}) reflect our
assumptions about what parameter values are more likely,
without considering the data. For example, we would expect
the enveloping weights to vary smoothly across the surface;
a set of enveloping weights that contains a sudden change in
weight is improbable considering the fleshy nature of a hu-
man. (We will describe the form of these prior terms in the
following subsections.)

To apply MAP estimation, we find the parameter values
that minimize the negative log likelihood. We ignore the
terms that do not depend on the parameter values (e.g., the
Gaussian normalization constants), and split p(c) into the
product of the parameters that make up the character vector:

− logP = nαnv1.5log(2πσ2
v)+

nα

∑
α=1

nv

∑
i=1

1

2σ2
v
||e(α)

i −v(α)
i ||2 −

log p(v̄)− log p(s)− log p(b,{qα})− log p(k) (8)

Due to the non-linearities in the skeletal transformations,
Equation 8 is too complicated to solve analytically. There-
fore, we use a standard optimization package [ZBLN97].
Because there are thousands of variables to optimize and
many local minima, it is critical to find a good initialization
for the parameter values.

In the following subsections, we will address each param-
eter value individually, describing the initialization process
and also the prior used for each parameter. We will address
these parameters in the order in which they must be initial-
ized: first the bones b and poses qα in Section 4.1.1, then the
enveloping weights s in Section 4.1.2, then the dress vertices
v̄ in Section 4.1.3, and finally the pose-dependent deforma-
tions k in Section 4.1.4. Afterwards, we will address issues
of symmetry (Section 4.1.5), and tuning the sigma values
(Section 4.1.6).
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4.1.1. Initializing and prior on the skeleton parameters

Here we consider how to initialize the bones b and the
poses qα based on our examples. We start with the labelled
markers from each scan. This set of markers is similar to mo-
tion capture data, and can be optimized using inverse kine-
matics (IK) while also optimizing the bone DOFs. (One such
optimization technique is discussed in detail by Silaghi et al.
[SPB∗98].)

Unlike motion capture, we have a relatively small set of
poses, sometimes as few as two, which is clearly insufficient
to determine the skeletal parameters. Indeed, we found that
only for our subject who was scanned in 69 poses could we
reliably determine a skeleton using markers alone. There-
fore, we supplement IK with a heuristic technique that is
inspired by how biomechanicists estimate of joint centers
from surface landmarks. Using a pose example which is in
the standard CAESAR standing pose, we can estimate the
joint centers as a linear function of landmark positions on
the body (e.g., the knee joint center is approximated by the
midpoint between two landmarks on either side of the leg).
We used the 69-pose example to find good surface landmark
positions for estimating the joint centers, and then find the
corresponding landmark points on other individuals using
surface matching (Section 3).

We employ this heuristic in the form of a prior term,
p(b,{qα})), to be included both during the IK initialization,
and during the optimization of Equation 8.

This prior states that for the CAESAR standing poses in
which we applied our heuristic techniques, the joint centers
calculated from our skeleton hierarchy should be close to

the heuristic-estimated joint centers, which we call h(α)
j . By

“close to,” we mean the distance has a Gaussian distribution
with mean 0 and variance σ2

b:

− log p(b,{qα}) ≈ ∑
j

1

2σ2
b
||h(α)

j −Mqα,b, j[0 0 0 1]T||2

(9)
In the above equation, α is the index of the CAESAR stand-
ing pose, and j is summed over the joint centers found by our
heuristic method. By using this prior, we can avoid the noise
and local minima that IK would provide when few poses are
available.

4.1.2. Initializing and prior on the enveloping weights

Given a large enough sample of poses, we could, in prin-
ciple, learn all of the enveloping weights automatically, by
determining which joint angles affect which surface points.
However, even with a large number of examples, one could
imagine that there could be some accidental correlation
between distant body parts that would introduce spurious
weights. Therefore, we manually label the approximate in-
fluence regions of each joint, in a one-time process, as shown
in Figure 2a. The labellings identify the maximum extent of
each joint’s influence. Outside each joint’s influence region,
its corresponding enveloping weight must be zero.

To obtain a reasonable enveloping result, we need to cre-
ate a smooth transition between the influence regions. We do
so by introducing a prior on the enveloping weights, based
on the squared umbrella operator U2(si) [KCVS98]. To min-
imize the curvature of our skinning weight function (in the
mesh domain), we introduce a zero-centered Gaussian term
for each weight-curvature estimate with variance σ2

s :

− log p(s) ≈
nv

∑
i=1

1

2σ2
s
||U2(si)||

2 (10)

Our initial values for the enveloping weights are found by
starting with the weights in Figure 2a, normalizing them,
and then minimizing this prior term only (ignoring the ac-
tual data). The resulting enveloping weights are very similar
to those shown in Figure 2b.

4.1.3. Initializing and prior on the dress shape

We can trivially initialize the dress shape by using one of our
matching results (e.g., for the CAESAR standing pose), and
determine the dress location of each vertex using the initial
skeletons and enveloping weights.

We choose to use a uniform prior for the dress shape (i.e.,
all shapes are equally likely in the absense of data), as our
initialization brings us quite close to the correct value, and
so there was no need for additional regularization. Therefore,
log p(v̄) is a constant and can be dropped from Equation 8.

4.1.4. Initialization and prior on the pose-dependent
deformations

We initialize the pose-dependent deformation offsets to be
zero, which is equivalent to using SSD without corrective
enveloping.

Unlike the dress vertices, we will introduce a prior on the
pose-dependent deformation offsets. As mentioned in the
previous subsection, we could reliably obtain a reasonable
dress shape from the standing CAESAR pose. This is be-
cause we chose to trust all of the data in this pose, even
where the scanned shape had holes, because our matching
algorithm works quite well in this pose. However, in other
poses, we are using a skinned template which has all of the
bad artifacts such as volume loss and a rubbery appearance.
Moreover, the other poses tend to have more occlusions or
grazing angle views, resulting in very large holes. Since we
do not have good data in these regions, we do not include

those example points e(α)
i in Equation 8. In fact, we scale

the weight of each observation in accordance with the scan-
ner confidence value, so that less-certain observations con-
tribute less to our model.

This solution is intuitively reasonable: we want to fit more
closely to good data than bad. However, it causes a problem
near the boundaries of good and missing data. Suppose we
notice that a bicep bulges, but there is a small hole in the
flexed arm scan. Our system would assume that the bicep
does not bulge in the hole, since there is no data to indicate
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any change. This runs counter to our intuition that the de-
formations are locally consistent, that is, shape changes at
nearby points should be very similar.

To include this intuition in our model, we supply the
following prior on the pose-dependent deformation offsets,
which applies to all neighboring vertices in the mesh:

− log p(k)≈
nj

∑
j

∑
{i1,i2|{vi1 ,vi2}∈edges(M)}

1

2σ2
k
||ki1, j−ki2, j||

2

(11)

This prior has an additional benefit. We specify an influ-
ence region for each pose-dependent deformation offset, as
shown in Figure 2c. We then force all offsets outside the in-
fluence region to be zero. Our regularization term will then
cause a smooth fall-off at the boundary of the influence re-
gion. Without this regularization, we would observe seams
at the boundaries, where spurious pose-dependent deforma-
tions developed near the boundary.

4.1.5. Symmetry

By and large, humans are bilaterally symmetrical across the
sagittal plane. We exploit this fact in our learning step in
order to reduce the number of variables in our model by ap-
proximately half, by implicitly stating that the left-side po-
sitions and displacements are the mirror-image of the right-
side values. We also implicitly make the left and right bone
DOFs the same. We make a concession to asymmetry when
it comes to carrying angles, and allow those to be unequal.
The reason is based on the quite high variation of these an-
gles, and the high mismatch that would arise from not re-
specting them.

4.1.6. Estimating variances

So far, we have introduced many variance values which
we assume have been provided manually: σ2

v, σ2
b, σ2

s , and
σ2

k. We made initial estimate for these values of (1 mm)2,
(1 mm)2, (0.01)2, and (1 cm)2 respectively. However, we
do not want to have to tweak all of these parameters to get
the ideal values.

Instead, after running our optimization for several itera-
tions, we re-estimate these parameters by optimizing Equa-
tion 8 in closed form for the best sigma values, and then
alternate back to the main optimization. (This technique has
been applied to a similar learning problem by Torresani and
Hertzmann [TH04].) Each of the aforementioned sigma val-
ues are based on a collection of Gaussian distributions. If the
number of Gaussians involved is n, the dimension of each
vector is d, and the distance from each point to the Gaussian
center is ei, then the optimal sigma value is:

σ2 = (
n

∑
i
||ei||

2)/nd (12)

4.2. Learning all identities

Next, we consider the problem of learning variation in both
pose and body shape. Thanks to the formulation of the char-
acter vector c we now have a convenient way to represent
this variation. Recall that the character vector encapsulates
all of the information needed to reconstruct a particular iden-
tity in any pose, implicitly storing such parameters as the
individual’s height, girth, and muscle tone. Previous work,
such as Allen et al. [ACP03] and Seo et al. [SCMT03], has
characterized the space of all human body shapes as a dis-
tribution within all shape-vectors. The key idea here is that
instead of finding a distribution over shape vectors, we will
find a distribution over character vectors.

In principle, if we had a large number of character vectors,
for example, if we had captured hundreds of individuals each
in many poses and applied the technique of Section 4.1, then
we could run PCA on those character vectors and have our
model. However, this approach would require a very large
number of scans, which would be very expensive to acquire,
store, and process. It is much more appealing if we can just
use whatever data samples we are given to build our model.
For instance, if we have a lot of pose data for one body shape,
we should be able to estimate the pose variation for another,
similar body shape, even if we just have one or two scans of
that person.

4.2.1. Learning character vectors

To model all character distributions, we assume that all char-
acter vectors are drawn from a latent variable distribution of
the form: c(β) = Wx+ c̄, where x has a Gaussian distribution
with unit covariance. We want to solve for the components
W and the mean character vector c̄. Unlike PCA, we will
not require that the components are orthonormal. If we had
a large set of character vectors, then we could use conven-
tional PCA. One problem with this approach is that different
parts of the character vector have different scales (depending
on whether they are vertex positions, angles, or offsets), and
so our analysis will be biased. A more serious issue is that
we cannot actually observe the character vectors directly; we
can only observe the shapes that they produce in a particu-
lar pose. In fact, if we only see an individual in a couple of
poses, we may not have enough information to reliably know
any elements of c.

Therefore, we propose the following generative model for
our vertex observations, based on our corrective enveloping
function f :

e(α,β)
i = f (Wxβ + c̄,s,qα)i +ν; xβ ∼N(0,I); ν∼N(0,σ2

vI)
(13)

We model the observation noise as an isotropic Gaussian
variable ν. Notice that Equation 13 is exactly the same as
Equation 4 in the previous subsection, except that we have
replaced c with Wxβ + c̄. That is, we now use a character
vector that we have reconstructed from the components in-
stead of using a fixed character vector.
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our resultno corrective enveloping
single-person

corrective enveloping

Figure 5: Results of meshes generated with our hybrid model are in the middle column. Each of these individuals was only
observed in a standard standing and seated pose, and then put into a novel pose using our method. We compare with using
enveloping alone, in the left column. In the right column, we show the result of transferring just one typical person’s correc-
tive enveloping onto the new character. Our learned model is able to generate corrections that are more suitable to the new
individuals’ body type. The color-tinted details (see color plate) compare our result with the left and right alternatives.

Our generative model is based on the Probabilistic Prin-
cipal Component Analysis (PPCA) algorithm introduced by
Tipping and Bishop [TB99] and by Roweis [Row98]. To find
the best W and c̄ values that explain our data, we could apply
the Expectation-Maximization (EM) algorithm [DLR77],
which alternates between estimating a distribution for each
xβ, and then finding the maximum expected likelihood val-
ues of W and c̄. However, unlike PPCA, we are observing
our data through the lens of corrective enveloping, a com-
plex and non-linear process. Therefore, the estimated dis-
tributions for xβ will not be Gaussian, making a full EM
optimization very difficult. Instead, we alternate between
optimizing for a fixed value of each xβ, and then optimiz-
ing W and c̄ using the MAP approach introduced in Sec-
tion 4.1. Neal and Hinton [NH98] refer to this approximation
as a “winner-take-all” variant of EM, and suggest that al-
though the guarantees of convergence that EM endows may
no longer apply, this approach will make progress towards
the minimum.

4.2.2. Initializing latent variables

In PPCA, the latent variables xβ can be initialized randomly,
due to the convergence guarantees. However, since our opti-
mization is less robust than the full EM approach, we would
do well to use a good initialization. The bone parameters are
a good choice to guide this initialization, because the skele-
tons are very important to obtaining an accurate fit, and they
can be estimated without running our full optimization. We

Variable #

Dress shape v̄ 106,920
Bone DOFs b 210
Pose-dependent deformations k 314,220
Pose DOFs q 12,561
Skinning weights s 17,820
Reconstruction weights x 450

Table 1: Summary of the total number of variables in our
optimization for all scans and components.

find the bone parameters b for each individual in our dataset
(Section 4.1.1), and run conventional PCA on these param-
eters. We then use the reconstruction weights provided by
PCA to initialize each xβ.

4.2.3. Summary of optimization steps

To model all poses for all identities, we need to solve for
a lot of variables (see Table 1), and take care to optimize
them in the correct order. In this section we will describe our
procedure for learning all variables from the range scans.

We begin with the 69-pose data set, and estimate b and
q from the markers (§4.1.1). We then initialize the skin-
ning weights smoothly (§4.1.2), and match all of the sur-
faces using the skinning initialization (§3). We then further
optimize q and v̄, then add s and b, and finally include k.
When the optimization starts to converge, we update the

c© The Eurographics Association 2006.



Allen et al / Learning a correlated model of identity and pose-dependent body shape variation for real-time synthesis

variances (§4.1.6) and then optimize further. This gives us
a single character vector to start with.

To move on to the multi-identity problem, we estimate
skeletons for the full dataset (§4.1.1), and use our learned
skinning model to initialize the surface matching (§3). We
also run PCA on the bone DOFs to initialize x (§4.2.2). We
first optimize for q and b using only the skeleton prior, and
then initialize the rest of c̄ with the single-person variables.
Now we can optimize all variables as in the single-person
case, but we also alternate with optimizing for x. The end-
to-end learning process takes about a day to run.

We chose to use 9 components (plus the mean c̄) to repre-
sent body shape. However, we only have six pose-dense in-
dividuals. Therefore, it is unreasonable to expect to be able
to learn 9 components for k. Indeed, even with six compo-
nents, we found that there was serious overfitting. Therefore,
we reduced the number of components for k to just 3 (i.e.,
the other 6 character vector components will have k that are
forced to be zero). By doing so, we eliminate overfitting and
force our optimization to find a correlation between k and
body shape.

5. Results

The overall root-mean-squared (RMS) reconstruction error
of our learned model with regard to the training set is 4.9
mm on each vertex. We also fit our model to five additional
scans of subjects who were not part of the training set, and
obtained an RMS error of 8.1 mm. Some of this error is due
to the difficulty in determining the pose and PCA weights of
these novel characters (which is done through an optimiza-
tion process).

Figure 3 shows our learned corrective enveloping model
applied to two of the characters in our multi-pose training
set. The novel poses were drawn from a motion capture se-
quence. Notice that the “joint-collapse” artifacts of pure en-
veloping are compensated for, and anatomical effects such
as the pointiness of the elbow, and the shape change of the
larger man’s upper arm are accounted for.

In Figure 5, we demonstrate additional results where our
model is applied to characters in the CAESAR set (who were
only observed in two poses), and new poses are applied. Our
results are much better that skinning applied alone: notice
the rubbery look in the arms and legs, and the lack of mus-
cle bulging in the triceps and pectoral muscles. In addition,
we claim that a single pose-deformation model is not suffi-
cient. To prove this claim, we also compare our result with
using corrective enveloping learned from just a single, aver-
age individual. Our model is able to automatically generate
corrective enveloping that is particular to a body type.

Using our latent variable model, we can perform analysis
tasks similar to previous work [BV99, ACP03]. For exam-
ple, we can learn a trend between recorded attributes about
each example and the latent variables. Figure 6 demonstrates

Figure 6: Editing body weight. We edit the weight of one
of the subjects (second from the left) using trends from the
population. The height is kept constant. The insets show the
re-posed left arm without corrective enveloping for compar-
ison.

a learned trend between height, weight, and body shape. We
are able to edit the weight of one of the subjects, while con-
trolling his height independently.

6. Conclusion

We have presented an algorithm for learning character mod-
els from observations of human body shape. Our algorithm
is robust in the face of sparse, irregular, and incomplete data.
By incorporating other information beyond the base shape
in our latent variable model, we have created a fundamen-
tally more expressive model for modeling the interdepen-
dence of pose-dependent deformation and individual varia-
tion. We have shown how our model is useful for synthe-
sizing and editing animated characters; in the future, we en-
vision other applications, e.g., providing a shape prior for
computer-vision and recognition applications.

A primary advantage of our approach is speed. Our syn-
thesized models can be posed by evaluating a few RBF val-
ues, then taking a linear interpolation of keys, and then ap-
ply standard enveloping. Our unoptimized software imple-
mentation can generate a posed shape in just 13 ms on a
2.8 GHz PC. In contrast, methods based on deformation
transfer [ASK∗05] take around one second per body.

Our method could be further improved by including more
data. Currently, our 16-pose datasets do not sample some
regions of pose-space very well (e.g., there are very few
raised arms and bent elbows). This causes some problems
in poorly sampled parts of pose- and identity-space; notice,
for instance, shoulder inflation for certain characters in the
final part of the accompanying video. In addition, it would
be nice to sample non-pose related DOFs, such as breathing
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and muscle load. Of course with a suitable female dataset,
we could also build an animatable female model.

One limitation of our approach is that some poses are very
difficult to capture, because of occlusions, or because they
are difficult to hold for a scanner. Self-collisions in the body
are particularly troublesome; not only can they not be cap-
tured, but they are very hard to model using a smooth func-
tion such as RBFs, because self-collisions cause a sharp dis-
continuity in the shape. To address such issues, it may be
necessary to eventually couple our method with a simulation
framework. Such a framework would also be able to model
dynamic phenomena, such as jiggling flesh, that we are un-
able to capture.
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