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Figure 1: A variety of city scenarios simulated with our model.

Abstract

We present a real-time crowd model based on continuum dynamics.
In our model, a dynamic potential field simultaneously integrates
global navigation with moving obstacles such as other people, effi-
ciently solving for the motion of large crowds without the need for
explicit collision avoidance. Simulations created with our system
run at interactive rates, demonstrate smooth flow under a variety
of conditions, and naturally exhibit emergent phenomena that have
been observed in real crowds.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation;
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1 Introduction
Human crowds are ubiquitous in the real world, making their simu-
lation a necessity for realistic interactive environments. Physically
correct crowd models also have applications outside of computer
graphics in psychology, transportation research, and architecture.
In this paper we focus on real-time synthesis of crowd motion for
thousands of individuals with intersecting paths. Our formulation
is designed for large groups with common goals, not for scenarios
where each person’s intention is distinctly different.

Real-time crowd simulation is difficult because large groups of
people exhibit behavior of enormous complexity and subtlety. A
crowd model must not only include individual human motion and
environmental constraints such as boundaries, but also address a
bewildering array of dynamic interactions between people. Fur-
ther, the model must reflect intelligent path planning through this
changing environment. Humans constantly adjust their paths to re-
flect congestion and other dynamic factors. Even dense crowds are
characterized by surprisingly few collisions or sudden changes in
individual motion. It has proven difficult to capture these effects in
simulation, especially for large crowds in real-time.

Virtually all previous work has been agent-based, meaning that
motion is computed separately for each individual. The agent-based
approach is attractive for several reasons. For one, real crowds
clearly operate with each individual making independent decisions.
Such models can capture each person’s unique situation: visibil-
ity, proximity of other pedestrians, and other local factors. In addi-
tion, different simulation parameters may be defined for each crowd
member, yielding complex heterogeneous motion. However, the
agent-based approach also has drawbacks. It is difficult to develop
behavioral rules that consistently produce realistic motion. Global
path planning for each agent quickly becomes computationally ex-
pensive, particularly in real-time contexts. As a result, most agent
models separate local collision avoidance from global path plan-
ning, and conflicts inevitably arise between these two competing
goals. Moreover, local path planning often results in myopic, less
realistic crowd behavior. These problems tend to be exacerbated in
areas of high congestion or rapidly changing environments.

This paper presents a real-time motion synthesis model for large
crowds without agent-based dynamics. We view motion as a per-
particle energy minimization, and adopt a continuum perspective
on the system. This formulation yields a set of dynamic potential
and velocity fields over the domain that guide all individual motion
simultaneously. Our approach unifies global path planning and lo-
cal collision avoidance into a single optimization framework. Peo-
ple in our model do not experience a discrete regime change in the
presence of other people. Instead, they perform global planning to
avoid both obstacles and other people. Our dynamic potential field
formulation also guarantees that paths are optimal for the current
environment state, so people never get stuck in local minima.

We note that global path planning is frequently an unrealistic as-
sumption. People often have limited vision and only partial knowl-
edge of the terrain. Global knowledge is only an approximation to
more accurate long-term planning with limited visibility and knowl-
edge. Still, we found that the global planning assumption produces
significantly smoother and more realistic crowd motion than the
common and equally unrealistic assumption of strictly local knowl-
edge. This is especially the case when people are threading through
dense congestion. At the same time, our framework is not as gen-
eral as agent-based methods: we trade-off individual variability for
real-time planning of optimal crowd behavior with minimal compu-
tation per individual. To achieve the benefits of both models, agents
can seamlessly be integrated with continuum crowds.

Contributions. This paper presents a new type of crowd simu-
lator driven by dynamic potential fields which integrate both global
navigation and local collision avoidance into one framework. Our
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system uses two very simple ideas which are crucial to creating
the effects we show: one is a velocity-dependent term which in-
duces lane formation, and the other is a distance-based term which
stabilizes the flow. We also show how individuals can integrate
knowledge of the future to produce more intelligent behavior. The
computational cost of our algorithm depends on the number of grid
cells used to compute the dynamic potential. At coarse discretiza-
tions we can simulate crowds of over ten thousand people at several
frames a second, while at fine discretizations we can simulate high
resolution dynamics for several thousand people at real-time frame
rates. We also show that our model exhibits important emergent
phenomena observed in real crowds. In particular, people walking
in opposite directions tend to form lanes, and group crossings can
form vortices.

2 Related Work

The most natural way to model locomotion of large human crowds
is with agent-based methods in which each person plans individu-
ally. This is primarily because people have distinct characteristics
and make decisions based on personal goals. Such dynamics have
reached perhaps their most sophisticated form in the work of Funge
et al. [1999], which models not only behavioral dynamics such as
stimulus response but also cognitive aspects such as knowledge and
learning. This model was further expanded with pedestrian visibil-
ity and path planning in [Shao and Terzopoulos 2005]. Massive
Software, founded by Stephen Regelous, publishes a production-
quality crowd simulator [Massive Software 2006] that gives the
animator the freedom to author details describing each individual
agent within the crowd. Though each of the above mentioned sys-
tems could be used to create ultra-realistic crowds, considerable
expertise is still required to design the “correct” model for each in-
dividual. It has recently been observed that no existing methods can
cover a comprehensive range of scenarios with accuracy suitable for
safety engineering purposes [Still 2000]. More importantly, in or-
der to accurately model human reasoning and congestion planning,
the computation cost for each individual is large. For this reason
the most accurate methods are impractical for real-time simulations
of large crowds, which is the main focus of this paper.

To improve on the performance characteristics of agent-based
methods, and to avoid the complexities of constructing a cogni-
tive model for each agent, researchers have explored a number of
simplifications to crowd models, including local methods, precom-
puted static path plans, and global path planning on a coarse en-
vironment graph. Locally controlled agents can be traced back to
the seminal work of Reynolds [1987] who demonstrated that emer-
gent flocking behavior can be generated from simple local rules.
Reynolds’s technique yields visually compelling flocks of birds and
fish. Since this work, a considerable corpus of research has emerged
focused on modeling human crowds with locally controlled agents.
Reynolds [1999] has expanded the set of possible behaviors. Other
work accounts for sociological issues [Musse and Thalmann 1997],
psychological effects [Pelechano et al. 2005], geographically-based
direction [Sung et al. 2004], social forces [Helbing et al. 1994;
Cordeiro et al. 2005], and nontrivial motion dynamics [Brogan and
Hodgins 1997], to name just a few.

Unlike real people, locally controlled agents do not perform
any global or mid-range planning to avoid non-local congestion
or cross-flowing pedestrians. Collisions are prevented locally by
changing movement when other people get sufficiently close. Many
interesting collision avoidance methods have been proposed in-
cluding geometric models [Feurtey 2000], grid-based rules [Loscos
et al. 2003], density-dependent techniques [Musse et al. 1998], be-
havioral models [Tu and Terzopoulos 1994], particle force interac-
tion models [Heı̈geas et al. 2003], and Bayesian decision processes
[Metoyer and Hodgins 2004]. Ultimately, local collision avoidance

(a)

(b)

Figure 2: (a) Two groups pass, naturally forming lanes. (b) A vortex
forms as four groups cross.

can only go so far in capturing the inherently long-term planning
process that humans employ to smoothly avoid dynamic conges-
tion. Because people continuously plan ahead, real pedestrians ex-
hibit virtually no near-misses or “visual bumps” as they navigate
through congestion. In this paper, we try to preserve this dynamic
planning behavior.

Collision avoidance alone cannot model real crowds where peo-
ple have an overall goal or objective. Consequently, many local
crowd models have combined collision avoidance with global nav-
igation. In general, global planning has taken the form of graph-
based techniques or static potential fields. Lamarche and Donikian
[2004] used sophisticated topological precomputations to enable
real-time per-agent global path planning which takes into account
visibility. They employed a separate collision avoidance process,
so their agents were susceptible to “getting stuck” due to local min-
ima under congestion. Bayazit et al. [2002] created visually pleas-
ing results using coarse graph-based roadmaps for global planning
together with collision avoidance. Probabilistic maps and decou-
pled planners were also combined with motion graphs and con-
straints to compute detailed locomotion of pedestrians [Sung et al.
2005]. Pettré [2005] uses navigation graphs of static scenes to find
pedestrian paths in real-time, but does not account for collisions or
congestion. Kamphuis and Overmars [2004] extended path plan-
ning so that agents could stay together. Li et al. [2001] assumed
a leader/follower model; they reduced the expense of global plan-
ning by only planning for the leader at the cost of a less general
system. Goldenstein et al. [2001] introduced a sophisticated three-
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layer technique to handle local and global navigation, using a static
potential field for maneuvering around fixed obstacles. Precom-
puted, static potential functions have also been used to study evacu-
ation [Kirchner and Schadschneider 2002]. In general, static poten-
tial fields do not handle changing environments, such as changing
traffic lights and exit congestion.

Agent-based crowd modeling has also been studied in transporta-
tion research for urban planning, path design, and evacuation [Hel-
bing et al. 2003]. Helbing’s social force model has been influential
in this field, and has proven capable of reproducing specific crowd
phenomena [Helbing et al. 2001]. A number of commercially avail-
able high-fidelity crowd models are available: the EGRESS system
[Ketchell 2002] employs a cell-based approach to simulating macro
behavior of crowds; Crowd Dynamics [Still 2000] uses a calibrated
agent-based framework to accurately model a number of observed
crowd phenomena.

Multiple-agent path planning has also been studied exten-
sively in robotics, primarily for cooperative tasks of multiple
robots. “Centralized” planners choreograph the motion of all agents
through spacetime [Li and Chou 2003]. These methods are expo-
nential in the number of robots, and are not appropriate for crowds,
where agents optimize for personal goals. Closer to our work are
“decoupled” planners where agents plan individually. Such algo-
rithms require priority schemes to fix conflicting plans [Bennewitz
and Burgard 2001]. Parker [1993] explores the trade-offs between
local and global planning. Potential fields for navigation have also
been explored in robotics, as by Arkin [1987].

Finally, an alternative approach to crowd synthesis has emerged
from the fluid dynamics community. Hughes [2003] has devel-
oped a model which represents pedestrians as a continuous den-
sity field and presents a pair of elegant partial differential equations
describing the crowd dynamics. Most importantly, this system is
driven by an evolving potential function, defined so as to guide the
density field optimally toward its goal. A full derivation can be
found in [Hughes 2002], and in a subsequent application to a me-
dieval battle analysis [Clements and Hughes 2004]. The 1D version
of this model was also confirmed with real crowd data [Hongwan
et al. 2003]. Alternative continuum models of 1D crowd flow have
also been analyzed [Colombo and Rosini 2005]. In the graphics
community, Chenney’s flow tiles [2004] demonstrated that desir-
able crowd properties such as congestion avoidance can be achieved
with divergence-free flows, although they do not address many of
the other important aspects of crowds.

Our model was directly inspired by Hughes’s work: we use a
similar potential function to guide pedestrians towards their goal.
We also adopt his technique of combining pedestrians into groups,
and the use of “discomfort fields” to handle geographical prefer-
ences. However, Hughes only investigates analytic properties of
his equations and does not discuss simulation. We address this by
transforming Hughes’s continuous crowd field into a particle rep-
resentation which is better suited to rendering and forms the basis
for our stable, efficient simulator. The particle representation is
fully integrated throughout the dynamics, from the theoretical un-
derpinnings to our grid discretization scheme, which is tailored for
the difficult case of fine grid resolutions relative to the size of the
people. We have also made numerous improvements to Hughes’s
model itself. Notably, we take into account crowd flow when com-
puting individual speed. This allows our system to exhibit a number
of visually interesting and empirically-confirmed phenomena such
as lane formation when people cross in contrary directions. Also,
we have changed the definition of path optimality to include a dis-
tance term, which inhibits the oscillations we observed in Hughes’s
dynamics.

3 The Governing Equations
In this section we develop a mathematical model of crowd dynam-
ics. We begin with a set of observations about crowd flow, with each
observation culminating in a precise hypothesis. Our model is di-
rectly derived from these hypotheses. We subsequently discuss the
role of potential functions in our model, and present the exact form
of the speed equation. We defer the discretization and simulation
of these equations to Section 4.

The overarching force driving crowd flow is that people have a
destination, or goal. Goals can be specific such as go to 1549 35th
street, or general as in go to the west side of town. They can also
be dynamic such as chase this person, find a non-empty theater
seat, or explore unseen parts of the environment. Crowd scenarios
without a definable goal such as browsing at the mall, or wandering
aimlessly are not appropriate for the continuum crowd formulation.
We consider goal selection to be an external parameter set by the
animator.

HYPOTHESIS 1. Each person is trying to reach a geographic goal
G ⊆ R2.

As people move towards their goal, the next most important con-
sideration is their speed. In general, we assume that people move
at the maximum speed possible given environmental conditions.
For example, a city-dweller might walk at a brisk pace, while a
medieval army might charge ahead at a fast run. The environment
affects the speed in a number of ways: descending a slope causes
people to increase their speed, while physical boundaries are
impassible. Most importantly, the presence of other people affects
speed. We assume people have difficulty moving against the
current which is proportional to the local crowd density. In the
extreme case, two people cannot intersect.

HYPOTHESIS 2. People move at the maximum speed possible. This
can be expressed as a maximum speed field f such that a person at
location x moving in direction θ has velocity:

ẋ = f (x,θ)nθ , (1)

where throughout this paper, nθ = [cosθ ,sinθ ]T will denote the
unit vector pointing in direction θ .

Even when people can move unobstructed, they may express
preferences for certain paths. Pedestrians, for example, often
do not cross a street until they reach a crosswalk. Also, people
generally follow trodden paths when they exist, even if they yield
longer routes. We represent this idea as follows.

HYPOTHESIS 3. There exists a discomfort field g so that, all things
being equal, people would prefer to be at point x rather than x′ if
g(x′) > g(x).

As with goal selection, the discomfort field is exogenous to our
model. However, in Section 3.3, we discuss how dynamic discom-
fort can be used to enhance collision avoidance between people and
other moving obstacles such as cars.

We now tie together the above hypotheses and describe how peo-
ple choose paths. In general, people choose the minimum distance
path to their destination. However, this preference is tempered by
a desire to avoid congestion and other time-consuming situations.
This can be seen as the classic trade-off between energy and time
minimization. Additionally, people prefer to minimize their expo-
sure to areas of high “discomfort.” We summarize these ideas by
assuming that people choose paths so as to minimize a linear com-
bination of the following three terms:

• The length of the path.
• The amount of time to the destination.
• The discomfort felt, per unit time, along the path.
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HYPOTHESIS 4. Let Π be the set of all paths from x to some point
in the goal. Assuming that the speed field f , discomfort g, and
goal G are fixed, a person at location x will pick the path P ∈ Π

minimizing

α

∫
P

1ds︸ ︷︷ ︸
Path Length

+ β

∫
P

1dt︸ ︷︷ ︸
Time

+ γ

∫
P

gdt︸ ︷︷ ︸
Discomfort

. (2)

Here α , β , and γ are weights for individual terms; ds means that
the integral is taken with respect to path length while dt means the
integral is taken with respect to time. These two variables are re-
lated by ds = f dt where f is the speed. Using this equality, we may
rewrite Equation (2) as

α

∫
P

1ds+ β

∫
P

1
f

ds+ γ

∫
P

g
f

ds (3)

which can be simplified to

∫
P

Cds, where C ≡ α f +β + γg
f

(4)

is the unit cost field.

3.1 Optimal Path Computation
We now show how potential functions can be used to find optimal
paths given the path cost described in Equation (4). Suppose we
have a function φ : R2 → R everywhere equal to the cost of the
optimal path to the goal. Intuitively, it makes sense that for any
person, the optimal strategy is to move opposite the gradient of this
function, as this will decrease cost of the path most rapidly. Con-
versely, this function can be constructed by following the set of all
optimal paths outwards from the goal, integrating cost along the
way. Indeed, the potential function φ can be defined exactly this
way: in the goal φ = 0, and everywhere else φ satisfies the eikonal
equation:

||∇φ(x)||= C, (5)

where the unit cost C is evaluated in the direction of the gradient
∇φ . A theorem from the calculus of variations (see, for exam-
ple [Kimmel and Sethian 2001]) guarantees that all optimal paths
follow exactly the gradient of this function. In our system, this
means that every person moves in the direction opposite the gradi-
ent, scaled by the speed at that point:

ẋ =− f (x,θ)
∇φ(x)
||∇φ(x)||

, (6)

where ẋ denotes the velocity, and f (x,θ) is evaluated in the direc-
tion of motion.

Calculating a potential field may seem like a cumbersome way
of finding an optimal path. We can, however, make a simplifying
assumption that justifies this method. Suppose a group of people
all share an identical speed field, discomfort, and goal. This is
often the case in crowds when a number of people are trying to
get to the same location at approximately the same speed. In this
case, we need to calculate the potential function for the group only
once, deriving optimal paths for all group members simultaneously.
In reality, of course, people move at different speeds, have varied
perceptions of discomfort, and seek different goals. Therefore, we
divide the crowd into a set of groups, each with different character-
istics. At each timestep we construct a potential function φ for each
group and then move the people in that group according to Equation
(6). Since each group affects the speed f and discomfort g across
all groups, the entire crowd motion is coupled.

Solving Equation (5) is the slowest aspect of simulation. Thus,
we prefer to have as few groups as possible. However, as we show
in our results, even one group exhibits interesting dynamics, and
realistic crowd congestion phenomena can be attained with few
groups.

3.2 Speed
The speed field f measures the maximum permissible speed of
movement for every point and every direction in the domain. Our
speed model is ad-hoc, but very simple to compute, and it provides
the physically plausible behavior for the crowd. We begin with an
intuitive description. Speed is a density-dependent variable. At low
densities, speed is dominated by the terrain, remaining constant on
flat surfaces, but changing with the slope. At higher crowd densi-
ties, the speed becomes dominated by the movement of nearby peo-
ple: movement is inhibited when trying to move against the flow,
but is unaffected when moving with the flow. Modeling this latter
effect is one important difference between our model and that of
Hughes [2003]. Moreover, we found that this velocity-dependent
term is crucial for modeling “lane formation” where people moving
in opposite directions along a path naturally segregate into separate
lanes, a phenomenon that has been widely noted in real crowds.

Since speed is density-dependent, we begin by describing the
crowd density field ρ . We convert each person into an individual
density field, denoted ρi for the ith person. This field should peak
at the location of person i, and fall off radially. The specific form
of this function is unimportant as long that it is no less than some
threshold value ρ̄ within a bounding disc of radius r, and no greater
outside. The crowd density ρ is simply the sum of each individual
density field. As we compute this, we simultaneously calculate the
average velocity field v̄ which scales each person’s density by his
velocity, indicating the overall speed and direction of crowd flow:

ρ = ∑
i

ρi, and v̄ = ∑i ρiẋi

ρ
. (7)

Here ẋi denotes the velocity of the ith person. Both sums are taken
across all people in all groups.

We now describe specifically how density affects the speed. In
areas of very low density (ρ ≤ ρmin for some ρmin), the speed f
is equal to the topographical speed fT . Assuming the terrain is
bounded to lie within the minimum and maximum slopes smin and
smax, the speed varies inversely with the slope:

fT (x,θ) = fmax +
(

∇h(x) ·nθ − smin

smax− smin

)
( fmin− fmax), (8)

where ∇h(x) ·nθ is the slope of the height field h in direction θ .
In areas of high density (ρ ≥ ρmax for some ρmax), the speed f

is equal to the flow speed fv̄:

fv̄(x,θ) = v̄(x+ rnθ ) ·nθ . (9)

The flow speed fv̄ is essentially the average velocity v̄ evaluated at a
distance r from the location x. The offset causes people to evaluate
the average velocity for the area into which they are trying to move.
Indeed, if not for the offset, a person’s speed would be dominated
by their own previous speed, an undesirable effect. Also, the flow
speed is clamped to be nonnegative, implying that the crowd can
slow people down, but never carry them backwards.

At medium densities (ρmin < ρ < ρmax), we linearly interpolate
between the topographical and flow speeds:

f (x,θ)= fT (x,θ)+
(

ρ(x+ rnθ )−ρmin

ρmax−ρmin

)
( fv̄(x,θ)− fT (x,θ)) .

(10)
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Note that, like the flow speed, the density ρ is evaluated at an offset
of rnθ , again for the same reason: we do not want a person’s own
contribution to the density field to self-obstruct their motion. Since
we assumed that a person’s contribution to the density field ρ is no
greater than ρ̄ outside the disc of radius r, we can be sure that in
low congestion their speed will always be equal to the topographical
speed so long as ρmin ≥ ρ̄ .

3.3 Models of the Future
The model presented in previous sections can be further improved
by accounting for two important aspects of crowd motion that in-
volve predictive models of the future:

Predictive discomfort. Individuals in our crowd simulator ac-
count for the future by path planning through a constantly updated
static view of the environment. That is, the model takes into ac-
count moving obstacles, but not that the obstacles are moving. Of-
ten this simplification is justified: real pedestrians avoid those walk-
ing in the opposite direction and intelligently plan around areas of
high congestion. In this model however, when two people cross
perpendicularly, they fail to anticipate one another. We address
this by adding a small amount of discomfort in front of each per-
son, causing others to avoid this region. Specifically, we advance
each person’s position by their velocity for several timesteps de-
positing to the discomfort field an amount proportional to the den-
sity that would be calculated were the person there. In simulations
with many intersecting paths, predictive discomfort yields smoother
flow, effectively incorporating the salient aspects of short-horizon
dynamic planning, while staying within our framework of fast, per-
timestep, 2D planning. In section 5, we extend this idea to collision
avoidance with other moving objects such as cars.

Expected periodic field changes. A similar issue arises when
the field deterministically changes over time. Consider an environ-
ment with two exit doors rapidly opening and closing. An exiting
crowd would continuously switch direction back and forth towards
the currently open door. Similarly, when a traffic light turns red
the speed field must be temporarily set to zero to prevent crossing.
Individuals in our basic model would naively conclude that cross-
ing is impossible, and pick another path. Here we offer a different
solution. When computing the potential, we replace the actual in-
verse speed with the expected inverse speed computed over a longer
time period. For traffic lights, the expected inverse speed is com-
puted from the percentage of time the traffic light is green during
a period. Similar computations are performed for other periodic
changes (e.g. opening doors). By the linearity of expectations, the
optimal path cost given in equation (2) can then be interpreted as
the minimizing the expected time to the goal.

4 Implementation
To simulate our system, the model described in the last section must
be discretized in time and space. The simulator advances through
each timestep as follows:

For each timestep:
• Convert the crowd to a density field.
For each group:

• Construct the unit cost field C.
• Construct the potential φ and it’s gradient ∇φ .
• Update the people’s locations.

• Enforce the minimum distance between people.

To compute these fields, we discretize space into a regular grid, with
physical variables defined at various locations within each grid cell.
We store all physical fields as 2D arrays of floating point numbers
according to the schema shown in Figure 4(a). All scalar fields are
defined at the center of each grid cell. This is also true of the av-
erage velocity v̄, which is stored as a pair of floats. All anisotropic

fields–those depending on both position and direction–are stored
with four floats per cell corresponding to θ = {0◦,90◦,180◦,270◦},
that is the east, north, west, and south faces of each cell. Finally, the
velocity v, the gradient of the height ∇h and of the potential ∇φ are
stored at the faces of each cell, in a MAC-style arrangement (see
[Fedkiw et al. 2001]). We now look more closely at how every step
of the simulator is implemented.

Figure 4: Discretized grid structure.

4.1 Density Conversion
We “splat” the crowd particles onto a density grid in order to com-
pute the speed field, which is density dependent. We have two re-
quirements of the density conversion function. First, the density
field must be continuous with respect to the location of the people.
Otherwise movement would cause sharp discontinuities in the den-
sity, and subsequently in the speed. Second, each person should
contribute no less than ρ̄ to their own grid cell, but no more than ρ̄

to any neighboring grid cell. Intuitively, this requirements ensures
that each individual is not affected by its own contribution to the
density field. This requirement is the discrete analog to the disc of
radius r surrounding each person described in Section 3.2.

The first requirement is standard, and could be satisfied by any
number of splatting techniques, including bilinear and Gaussian.
The second requirement is unusual, and we have defined a new den-
sity conversion technique to satisfy it. For each person, we find the
closest cell center whose coordinates are both less than that of the
person. We then compute the relative coordinates [∆x,∆y] of that
person with respect to the cell center, as shown in Figure 4(b). The
person’s density is then added to the grid as

ρA = min(1−∆x,1−∆y)λ ρB = min(∆x,1−∆y)λ

ρC = min(∆x,∆y)λ ρD = min(1−∆x,∆y)λ ,

where the density exponent λ determines the speed of density
falloff. This density conversion method is continuous with respect
to the location of each person, and is defined so that each person
contributes at least ρ̄ to their grid cell, but no more than ρ̄ to neigh-
boring cells, with ρ̄ = 1/2λ . Thus, our requirements are satisfied.
As we compute the density field ρ , we simultaneously compute the
average velocity v̄ according to Equation (7).

4.2 Unit Cost
There are two steps to computing the unit cost field C. We first
compute the speed field f according to Equation (10), then calcu-
late the cost field C using Equation (4). These fields are anisotropic
so computing them involves not only iterating over each grid cell,
but also iterating over each of the four directions within each cell.
For example, for cell M in Figure 4(a) we must compute fM→i and
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Figure 3: General algorithm overview.

CM→i for i ∈ {E,N,W,S}. So that the pedestrians anticipate ob-
structions ahead, we evaluate the speed and discomfort at the cell
into which the person would be moving if they chose that direction.
For example, in the case of fM→E , we would plug the density ρE ,
discomfort gE , and average velocity v̄E into Equation (10).

4.3 Dynamic Potential Field Construction

Constructing the dynamic potential is the most complex and time
consuming step of the algorithm. Equation (5) defines the poten-
tial as an implicit eikonal equation, and hence cannot be calculated
directly. However, efficient methods have been developed to solve
this type of equation, notably the fast marching method [Tsitsiklis
1995] and the fast sweeping method [Tsai et al. 2005]. We have
chosen the former, since the latter becomes inefficient when opti-
mal paths must follow circuitous routes (because of obstacles, for
example).

The fast marching algorithm is by now well known so we de-
scribe our implementation only briefly and refer the reader to [Tsit-
siklis 1995] for more details. We begin by assigning the potential
field φ the value of 0 inside the goal, and including these grid cells
in the list of KNOWN cells; all other cells are UNKNOWN and set to
∞. Those UNKNOWN cells adjacent to KNOWN cells are included
in the list of CANDIDATE cells and we approximate φ at these loca-
tions by solving a finite difference approximation to Equation (5).
The CANDIDATE cell with the lowest potential is then included in
the KNOWN cells, and its neighbors are introduced into the CAN-
DIDATE set by re-approximating the potential at these cells. This
process is repeated, propagating the KNOWN cells outwards from
the goal until all cells are defined. A heap data structure efficiently
handles the list of candidate grid cells and gives the algorithm its
O(N logN) running time, where N is the number of grid cells.

We now describe the finite difference approximation to equation
(5). Suppose we were solving the equation for grid cell M in Figure
4(a). We first find the less costly adjacent grid cell along the both
x- and y-axes:

mx = argmin
i∈{W,E}

{
φi +CM→i

}
my = argmin

i∈{N,S}

{
φi +CM→i

}
.

We then use these upwind directions to calculate a finite difference
approximation to Equation (5) by solving for the larger solution to
φM in the quadratic equation

(φM −φmx)
2

CM→mx

+
(φM −φmy)

2

CM→my

= 1. (11)

If either mx or my is undefined because both neighbors have infinite
cost, then we drop that dimension out of Equation (11). Note that,
up to the discretization of the angles, this formulation correctly han-
dles the anisotropy of the unit cost field C. Once we have computed
φM , we take its difference with the neighboring grid cells in the up-
wind direction giving us ∇φ . We then renormalize the gradient, and
multiply by the speed in the appropriate directions to compute the
velocity field v at that point.

4.4 Crowd Advection

Having calculated the potential field φ , its gradient ∇φ , and de-
termined the velocity field v, we then simply update each person’s
position by interpolating the velocity field. Each person’s position
is displaced by their velocity, effectively computing an Euler inte-
gration of Equation (6). We have experimented with higher order
Runge-Kutta integrators, but they do not appreciably affect the dy-
namics.

4.5 Minimum Distance Enforcement

In theory, our model ensures that no two people will intersect. Two
people approaching one another will eventually experience density
so high that the average velocity term dominates the speed equation
and their speed towards each other will drop to zero. In practice,
however, we can only resolve the dynamics up to the resolution of
the grid, and two people in the same grid cell will sometimes in-
tersect. This happens with relative infrequency as people naturally
avoid one another in our system. However, when intersections do
happen, they cause visually unpleasant artifacts.

To address this, we enforce a pair-wise minimum distance be-
tween the people. We simply iterate over all pairs within a thresh-
old distance, symmetrically pushing them apart so that the mini-
mum distance is enforced. This procedure does not strictly ensure
that minimum distances are preserved, as modifying the position of
one person changes that person’s distance to all other people. Also,
minimum distance enforcement occasionally introduces artifacts,
such as when non-moving people are pushed by others. However,
the vast majority of the time we found this method useful for elimi-
nating intersection artifacts which could not be resolved by the grid.
Note that minimum distance enforcement has linear time complex-
ity if the crowd is first “binned” into a high-resolution neighbor
grid.
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Figure 5: People in yellow shirts evacuate a building.

5 Results
We have run a diverse set of crowd simulations with our system and
found that the continuum method can produce smooth behavior for
thousands of agents at interactive rates. We encourage the reader
to view the animations in the companion video. Our implementa-
tion was in a mixture of Python and C++. All simulations ran on
a 3.4GHz Pentium with a NVidia Quadro FX 3400 graphics card.
Simulation updates took between 2 and 5 frames per second (fps).
This running time includes a parallel rendering thread which calcu-
lated “in-between” frames at 24 fps (12 fps for our 10,000 person
example). Because our simulations usually exhibited smooth mo-
tion, the decoupling of the renderer from simulator was not appar-
ent, yielding real-time, interactive simulations. The most notice-
able motion artifacts in our simulations were due to our simplified
human animation. We used basic locomotion cycles with precom-
puted in-between poses to avoid popping artifacts between cycles.
A more sophisticated off-line motion model would produce higher
quality results, but would preclude interactive animation.

Figure 2(a) shows a simulation of twenty-four people crossing in
a hallway and forming lanes to avoid collision. This phenomenon
is ubiquitous in real crowds, and it can be observed in all of our
simulations. In Figure 2(b), we show a simulation of four groups
crossing one another to reach opposite corners of the domain. A
vortex forms as the groups cross paths. This emergent behavior is
an exotic form of lane formation, and it also serves to prevent col-
lisions. Such vortices have been observed in real crowds [Helbing
et al. 2003]. In these simulations, the checkered pattern on the floor
indicates the grid size.

We have also run comparisons with two agent-based models
which can be seen in the companion video. These models are the
flocking model of Reynolds [OpenSteer 2006], and the particle-
forces model of Heı̈geas [2003]. We can see that in local models,
people do not plan early for congestion, and thus do not avoid it un-
til they are near. If we increase the local collision avoidance range,
pedestrians avoid congestion earlier, but also tend to spread out, tak-
ing significantly longer paths towards their goal. With continuum
crowds, people plan to avoid congestion in advance and the overall
movement assumes a smoother, more optimal flow. We note that it
is certainly possible for local models to display vortex-like crowd
flow as reported by Heı̈geas, but such emergent features occur only
for specific parameters of the model and only after the simulation
has reached a steady state. It is also possible to mix continuum
crowds with agents, as shown in Figure 7 where a continuum crowd
interacts with Reynolds agents.

One of the features of our system is that very large scale simu-

Figure 6: A continuum crowd reacts to a user-driven flying saucer
agent in real-time.

lations are possible on coarse grids. To demonstrate this, we simu-
lated a 2000 person army retreating from an 8001 person army on
a 60×60 grid (Figure 8). Despite the coarse resolution, interesting
effects are apparent in which people change paths as congestion
conditions evolve across the mountainous terrain. This simulation
ran at 5 fps before rendering “in-between” frames.

We also simulated a school quad as classes get out. People exit
from eight doorways and are randomly assigned a different destina-
tion door. This simulation was challenging because people crossed
paths at many different angles. For this reason, we used added ten
timesteps of predictive discomfort, and the result is a smooth flow,
even under the rapidly changing conditions.

Finally, we created a 16 square block city environment with
crosswalks, streets, and sidewalks (Figures 1, 5, and 6). Our sim-
ulations contained between one and two thousand people on this
120× 120 grid. By adding discomfort to the streets, people pre-
ferred to stay on the crosswalks, crossing the streets only when
congestion was too great. We were also able to simulate the 9 traf-
fic lights by setting the speed onto the street to zero when the light
is red. Since the expected value of the traffic light turning green
is included in the planning, pedestrians do not opt to go elsewhere
once the light turns red. We also simulated a building evacuation
(Figure 5), a scenario which is of interest for urban planning, and
also served to highlight the interesting congestion phenomena that
occur when groups travel at different speeds. Finally, we created

Figure 7: A continuum crowds group (blue) interacts with a group
of Reynolds agents (red).
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Figure 8: A large army chases a smaller one through mountainous
terrain in real-time.

two simulations in which people predictively reacted to moving ob-
stacles. We projected discomfort and increased speed in front of the
obstacles so that people would move quickly out of the way. In our
first example, cars are driving slowly through crowded streets. We
consequently added only small amounts of discomfort and speed.
In our second example (Figure 6), a user interactively flew a fly-
ing saucer agent through our simulation at much higher speeds. We
correspondingly increased the amount and size of the region of in-
creased speed and discomfort. Despite the 5 fps simulations rate,
the pedestrians correctly avoided the flying saucer, and the 24 fps
renderer provided smooth motion. The grid resolution is equal to
the size of the sidewalk tiles shown in Figure 6.

6 Discussion and Future Work
In this paper we presented a novel crowd simulation framework
based on a continuum perspective rather than per-agent dynam-
ics. In this respect, we further develop the abstract model pro-
posed by Hughes [2003]. We describe several enhancements to this
model that produce more realistic crowd behavior. Most notably,
we changed the continuous density field into a particle descrip-
tion of the crowd and developed a full set of continuous dynamics
for this representation. We added a velocity-dependent term to the
speed computation which is crucial for reproducing emergent phe-
nomena that have been widely noted in real crowds. We also added
a distance term to the optimal path computation which is psycho-
logically plausible, and reduced the oscillations in Hughes’s model.
In addition, we described an algorithm for the efficient simulation
of our continuum model. Finally, we showed how our model could
be adapted to several interesting situations including traffic lights
and predictive avoidance of moving objects.

Our model has numerous advantages over previous systems in
graphics. First, our model unifies global planning and collision
avoidance. This means that individuals in our simulations do not
face conflicting requirements between local collision avoidance and
global planning, and they exhibit smoother motion than has been
previously reported. This brings our model closer to real crowds,
which are characterized by surprisingly few sudden changes in di-
rection. This has also allowed our system to capture a number of
emergent phenomena that have been reported in the crowd litera-
ture, including lane formation and short lived vortices during turbu-
lent congestion. By decoupling the simulator from the renderer, we
were able to simulate these phenomena interactively.

It is possible to integrate our model with agent models. In our
examples, the moving cars (driven by a simple rule) and the flying

saucer (driven interactively) are all agents. We also show integra-
tion with more traditional agents in our video, where our model in-
teracts with an “unaligned collision avoidance” behavior. Figure 7
shows a simulation of a continuum crowd interacting with Reynolds
agents.

Like all models, our continuum approach makes simplifying as-
sumptions. Most notably, we do not take into account visual occlu-
sions or any other form of uncertainty, effectively assuming that
people really know the dynamic properties of the environment.
While this assumption may be reasonable for daily urban commut-
ing, limited vision certainly influences real crowds in unknown en-
vironments. In those cases, global knowledge planning is an ap-
proximation, in a similar way that local proximity knowledge is an
approximation. We believe that global knowledge approximation
is justifiable in the cases where our model most directly applies:
large crowds navigating open and familiar areas. More importantly,
compared to alternative approaches and other approximations, the
use of global knowledge provides more smooth crowd behavior and
allows us to plan for everyone at once, achieving high simulation
speeds. We also think that it is possible to incorporate partial visi-
bility and we hope to address this issue in the future.

We also assume that people can change direction without respect
to inertia. While this is justified for walking crowds, it becomes
unrealistic when people run. This could be addressed by giving
each person a state consisting of position and velocity, and solv-
ing a 4D eikonal equation through this state space; however this
method would not be real-time. Another useful extension would be
to solve for the potential function across nonuniform grids. This
would allow sparse data points in areas with few people, and finer
discretizations in areas of congestion, which might yield a substan-
tial speedup.

Our system does not have the flexibility and individual variabil-
ity of the full agent-based approach. Continuum crowds are de-
signed specifically to model multiple large homogeneous groups of
people who are moving in order to reach a specific goals. Since very
large crowds are observed at a distance where it is harder to notice
details of individual behavior, we felt that smooth movement, lane
formation and planned motion were more important features to pre-
serve than individual variability. At the same time, occasional vari-
ability can be achieved by inserting a number of agents within the
continuum crowds. The continuum crowd model treats agents as
moving obstacles and naturally handles the unpredictability of their
behavior. We suspect that this hybrid model of continuum crowds
with embedded agents may be the most natural use of continuum
crows in larger interactive frameworks including games.

The continuum crowd model is not appropriate for all crowd be-
havior. For example, it does not take into account the regime where
people are so tightly packed that contact forces between them dom-
inate the physics. It is also limited by the requirement that people
move with a common goal. As a result, browsing without a spe-
cific goal, such as visiting an art gallery, is not well suited for the
continuum formulation. At the same time, the continuum frame-
work can be applied to wide range of scenarios that at first do not
seem to meet the common goal hypothesis. These scenarios are
achieved by dynamically changing goals and discomfort fields. For
example, environment exploration can be modeled by setting goals
to collectively unseen regions. We have similarly produced exam-
ples of “posse chasing” behavior, where goals are set to the loca-
tion of target people, and avoidance behavior, where goals are set
to a large-radius circle around people that should be avoided. The
unassigned-seat theater-filling example can also be modeled by re-
moving each “seat goal” as they get occupied.

We are encouraged that our algorithm has recently been eval-
uated and licensed by Electronic Arts for use in next-generation
games. According to their feedback our method appears to be
uniquely attractive for a number of reasons: it produces more
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natural crowd threading behavior than the agent-based methods
evaluated; it doesn’t “get stuck” even during very long simulations;
real-time performance is possible with very large crowds, and it
integrates well with autonomous agents.
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