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Abstract

We formulate the problem of scene summarization as se-

lecting a set of images that efficiently represents the visual

content of a given scene. The ideal summary presents the

most interesting and important aspects of the scene with

minimal redundancy. We propose a solution to this prob-

lem using multi-user image collections from the Internet.

Our solution examines the distribution of images in the col-

lection to select a set of canonical views to form the scene

summary, using clustering techniques on visual features.

The summaries we compute also lend themselves naturally

to the browsing of image collections, and can be augmented

by analyzing user-specified image tag data. We demonstrate

the approach using a collection of images of the city of

Rome, showing the ability to automatically decompose the

images into separate scenes, and identify canonical views

for each scene.

1. Introduction

How can the visual splendor of Rome be conveyed in a

few images? While a good guidebook can provide a lot of

information and context to plan your trip, guidebooks tend

to be far less efficient at conveying what you should expect

to see. This paper addresses the problem of automatically

selecting images that best summarize a scene by analyzing

vacation photos for a large population of people.

If a site is visually interesting, it’s almost certain that

there are several photos of it on the Internet, uploaded by

people who have visited that site in the past. Hence, the

collection of photos on the Internet comprises an extremely

rich and increasingly comprehensive visual record of the

world’s interesting and important sites. However, the un-

organized nature of this collection makes finding relevant

photos very difficult. For example, a search for “rome”

on the photo-sharing site Flickr [2] returns several hundred

thousand thumbnails, listed in seemingly random order.

Our objective is to automatically derive, from thousands

of photos downloaded from Internet sharing sites, a one

page visual summary of a scene or city that captures the

key sites of interest. In an interactive setting, a user can see

“canonical views” of each site of interest, and browse pho-

tos on the Internet that correspond to each canonical view.

When textual user “tag” data is available, we show how it

can be used to augment scene summaries by analyzing the

tag statistics.

Our approach to scene summarization involves three

problems. The first is to partition the image set into groups

of images, each corresponding to a different representative

view of that scene. The second is to identify a canonical

view to represent each group. The third is to compute tex-

tual tag information that best represents each view. Com-

puting a city summary further requires identifying all of the

distinct sites of interest in that city. (See Figure 1 for an

example summary of the Vatican.)

At a technical level, our approach works by applying

clustering techniques to partition the image set into groups

of related images, based on SIFT feature co-occurrences.

The clustering is performed using a greedy method that

we have found outperforms k-means for this application.

Canonical views are found by using a likelihood measure,

also defined based on feature co-occurrences. Descriptive

textual tags are computed using probabilistic reasoning on

histograms of image-tag co-occurrences. Due to the large

amount of noise in user tags, obtaining high quality tags

turns out to be a surprisingly difficult problem, on which

we show promising initial results.

2. Problem Statement

We begin by defining some terminology. Throughout the

paper, we use the term photo interchangeably with image

and view, all of which refer to an ordinary 2D image. We

define a collection as a set of photos, and we consider two

photos to be connected if at least one object is visible in

both photos. We define a scene in a collection as a set of

connected photos of rigid 3D geometry.

In its most basic form, a summary is a set of photos that

represents the most interesting visual content of a scene.

The purpose of a summary is to quickly give a viewer an

accurate impression of what a particular scene looks like.

In Section 5, we augment summaries to handle photo col-

lections containing multiple scenes.

Our goal, then, given a set of photos V of a single scene
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Figure 1. A 10-image summary of 2000 images of the Vatican computed by our algorithm.

S, is to compute a summary C ⊆ V such that most of the

interesting visual content in V is represented in C.

3. Related Work

Our scene summarization approach draws on related

work from three main areas: canonical views, summariza-

tion, and modeling linked visual and textual data.

3.1. Canonical Views

The problem of selecting views that capture the essence

of a geometric object has been studied for over twenty

years in the human vision and computer vision communi-

ties. Defining precisely what makes a view “canonical” is

still a topic of debate. In their seminal work, Palmer et al.

[21] proposed four different criteria, which we paraphrase

as follows:

1. Given a set of photos, which view do you like the best?

2. When taking a photo, which view do you choose?

3. From which view is the object easiest to recognize?

4. When imagining the object, which view do you see?

In a series of experiments designed to compare these cri-

teria, Palmer et al. found significant correlation between

all four tasks, concluding that human observers choose the

same types of views regardless of the task. Subsequent

studies provide further support for many of these conclu-

sions, although recent experiments by Blanz et al. [6] pro-

vide conflicting conclusions for the fourth criterion, finding

that people tend to imagine objects in plan views, but pre-

fer looking at off-axis views. From the standpoint of scene

summarization, however, the first three tasks are most rel-

evant, and these perceptual experiments suggest that recur-

ring views in multi-user photo collections (criterion 2) can

enable summaries that are both visually appealing (criterion

1) and facilitate recognition (criterion 3).

There is a significant literature on computing canonical

views in the computer vision literature. Note that the criteria

of Palmer et al. are not applicable for computer vision tasks

as they are defined in terms of a human observer. Hence,

canonical views work in the computer vision community

has sought to identify principles and algorithms baesd on

the geometry of an object or a set of photos. For example,

Freeman [16] and Weinshall et al. [28] quantify the likeli-

hood of a view by analyzing the range of viewing conditions

that produce similar views, using knowledge of object ge-

ometry. More closely related to our work are methods that

take as input a set of photographs. In particular, Denton et

al. [12] use a semidefinite programming relaxation to se-

lect canonical views from a larger set of views, choosing

views which are as similar as possible to the non-canonical

views while being dissimilar to each other. Hall and Owen

[17] define canonical views as images with low likelihood,

while being orthogonal to each other. They compute a 10- to

20-dimensional eigenmodel of a set of images (represented

as vectors of grayscale values), then iteratively extract the

least likely view that is nearly orthogonal to all previously

selected views.

In our work, we take a fundamentally different approach

to computing canonical views that is more directly related

to the original principles in Palmer et al. Instead of attempt-

ing to infer such views from the geometry or from a set of

uniformly sampled views, we use photo sharing websites to

sample the distribution of views from which people choose



to take photographs. Hence, we are relying on a population

of photographers to provide a likelihood distribution over

camera viewpoints (as in criterion 2), and our task reduces

to computing clusters and peaks of this distribution.

A second fundamental difference between our work and

prior work on canonical views is our focus on large scale

scenes rather than individual objects. While many objects

can be represented effectively with a single canonical view,

the same is not true of scenes. (Consider a church, for ex-

ample, which has both an interior and an exterior, and may

require several images to capture the interesting aspects.)

And while most prior work on canonical views considered

only a limited range of viewpoints (e.g., views on a hemi-

sphere), images from photo sharing websites tend to have a

broad sampling of positions, orientations, and focal lengths,

sampling a 7D viewing space.

3.2. Summarization

With the recent proliferation of images and other shared

data accessible online, techniques for summarizing large

data sets for human consumption have garnered some in-

terest. Rother et al. [23] summarize a set of images with

a “digital tapestry”. They synthesize a large output image

from a set of input images, stitching together salient and

spatially compatible blocks from the input image set. Wang

et al. [27] create a “picture collage”, a 2D spatial arrange-

ment of the images in the input set chosen to maximize the

visibility of salient regions. In both of these works, the set

of images to appear has already been chosen, and the visual

layout is to be determined. We ignore issues of layout and

focus on selecting the set of images to appear in the sum-

mary. Once selected, these images could be arranged in a

digital tapestry or picture collage.

Clough et al. [9] construct a hierarchy of images us-

ing only textual caption data, and the concept of subsump-

tion. A tag ti subsumes another tag tj if the set of images

tagged with ti is a superset of the set of images tagged

with tj . Schmitz [24] uses a similar approach but relies

on Flickr tags, which are typically noisier and less infor-

mative than the captions. Jaffe et al. [19] summarize a set

of images using only tags and geotags. By detecting corre-

lations between tags and geotags, they are able to produce

“tag maps”, where tags and related images are overlaid on a

geographic map at a scale corresponding to the range over

which the tag commonly appears. All of these approaches

could be used to further organize our summaries. However,

none of them take advantage of the visual information in the

images to fill in for bad or missing metadata.

3.3. Modeling Linked Visual and Textual Data

Barnard and Forsyth [5] explored the relationship be-

tween visual and textual data for several problems in com-

puter vision, including object recognition, image search,

and image and region auto-annotation. Further work by

Duygulu et al. [14] and Barnard et al. [4] explored various

generative models for images with associated text. Also,

Blei and Jordan [7] extend the generative model from latent

Dirichlet allocation [8] to handle annotated data.

Our approach for combining visual and textual data is

perhaps simpler than the previous approaches, as this is not

the main focus of our paper. In addition, we are not attempt-

ing to learn a model to apply to unseen images. We only use

textual tag data to enhance the scene summaries, which in-

volves selecting tags that are likely to apply to large clusters

of the images we already have.

4. Scene Summarization Algorithm

Given a set of views V of scene S (see Figure 2), we wish

to compute a summary C ⊆ V that represents the most inter-

esting visual content in V . Before discussing the algorithm,

we describe our representation of views and scenes:

Scene S is represented as a set of visual features

f1, f2, . . . , f|S|. Each visual feature corresponds to exactly

one point in the 3D environment. (However, it is possible

that due to large differences in lighting or viewing direc-

tion, the same 3D point corresponds to multiple features.)

A view V ∈ V is represented as the subset of S correspond-

ing to the features which are visible in the view. There-

fore, the set of photos V can be represented by an |S|-by-

|V| Boolean matrix. This type of term-document matrix is

often used as input for systems dealing with text documents

[11], and more recently images [22]. Note that in many pre-

vious cases, each entry (i, j) in the term document matrix

is a tally (how many times term/feature i appears in docu-

ment/image j). In our case, since a feature corresponds to

an actual 3D point, it can only be present or absent.

4.1. Computing the Feature-Image Matrix

We first transform the set of views into a feature-image

incidence matrix. To do so, we use the SIFT keypoint detec-

tor [20] to find feature points in all of the images in V . The

feature points are represented using the SIFT descriptor.

Then, for each pair of images, we perform feature match-

ing on the descriptors to extract a set of candidate matches.

We further prune the set of candidates by estimating a fun-

damental matrix using RANSAC and removing all incon-

sistent matches, as in [26]. After the previous step is com-

plete for all images, we organize the matches into tracks,

where a track is a connected component of features. We re-

move tracks containing fewer than two features total, or at

least two features in the same image. At this point, we con-

sider each track as corresponding to a single 3D point in S.

From the set of tracks, it is easy to construct the |S|-by-|V|
feature-image incidence matrix.



Figure 2. A random set of 32 images of the Pantheon. Our algorithm takes an unsorted image set like this one, but containing thousands of

images, and selects a set of canonical views to serve as a summary.

4.2. Selecting the Summary Views

There are a number of possible criteria for choosing

views to include in the summary, some of which are:

likelihood - An image should be included if it is similar to

many other images in the input set.

coverage - An image should be included if it covers a large

number of visual features in the scene.

orthogonality - Two images should not both be included if

they are similar to each other.

We focus mainly on likelihood, as we are interested in har-

nessing the consensus of users of photo sharing sites for

selecting canonical views.

4.2.1 Image Likelihood

The most popular criteria in previous work on canonical

views are likelihood ([16], [28]) and orthogonality ([12],

[17]). However, in previous work, the likelihood of an im-

age referred to the range of viewing parameters that pro-

duces similar views. We, on the other hand, have a set of

images distributed according to the viewpoint preferences

of human photographers. Our likelihoods are measured on

this distribution and not inferred solely from geometry (or

using a uniform distribution over viewing directions). We

define the similarity between two views as:

sim(Vi, Vj) =
|Vi ∩ Vj |
√

|Vi||Vj |
(1)

Equation (1) measures the cosine of the angle between the

normalized feature incidence vectors for the two images. If

both views have the same number of features, this is sim-

ply the fraction of features that are shared. If the two views

do not share any features, the similarity is zero. In a slight

abuse of notation, we will use V to refer to the set of fea-

tures in a view as well as the normalized Boolean feature

incidence vector. So:

sim(Vi, Vj) = Vi · Vj

A simple definition of likelihood is then:

lik(V ) =
∑

Vi∈V

(Vi · V ) (2)

This definiton of likelihood is closely related to the log like-

lihood of the set of images V being drawn from a von Mises-

Fisher distribution (a spherical analogue of a Gaussian) with

the normalized feature incidence vector for V as mean pa-

rameter µ:

p(X|µ, h) =
∏

x∈X

f(h)eh(x·µ) (3)

log p(X|µ, h) = h
∑

x∈X

(x · µ) + log f(h) (4)

where h is the nonegative concentration parameter and f(h)
is the normalizing constant chosen so that p(x|µ, h) inte-

grates to one. Note that h only specifies a linear transfor-

mation on the sum of similarities, and can often be ignored.

4.2.2 Clustering Objective for Canonical Views

Because our goal is to represent the target image set V , we

include a quality term for each view Vi ∈ V expressing the

similarity between Vi and its closest canonical view Cc(i)

in C, where c contains the mapping of views to canonical



(a) Canonical views selected by the spherical k-means algorithm with k = 6.

(b) The output of our greedy k-means canonical views algorithm with α = 8.

(c) The output of our greedy k-means algorithm with α = 5.75 and orthogonality weight β = 100.

(d) All six photos from the Wikipedia [3] entry for the Pantheon, in order of appearance.

(e) Left to right: one Pantheon photo from the Berlitz [25] and Lonely Planet [18] guidebooks, and three from Fodor’s [15].

These are the only images of the Panthon in the three guidebooks.

Figure 3. Comparison of several summaries of the Pantheon. Summary (a) illustrates the failure of the spherical k-means algorithm to find

meaningful clusters. Summaries (b) and (c) are typical of our results, and demonstrate the effect of the explicit orthogonality constraint.

Hand-created summaries (d) and (e) are included for comparison. Note that our summary views are quite similar to those in Wikipedia

and the guidebooks. When we produce larger summaries, we often select interesting views which are left out of Wikipedia and typical

guidebooks (see our project web page [1]).

views. Also, we want to penalize solutions with too many

canonical views, as our summaries are meant to be read-

able quickly, so we include a cost term α for each canonical

view. Our algorithm attempts to maximize the following

quality function:

Q(C) =
∑

Vi∈V

(

Vi · Cc(i)

)

− α|C|

The summation term is closely related to the log likelihood

of the set of views V being drawn from a mixture of von

Mises-Fisher distributions with equal mixture weights and

common concentration parameter h. The −α|C| term can

be thought of as enforcing a geometric prior on the number

of canonical views.

This objective function implicitly encourages the canon-

ical views to be orthogonal, as each view V need only be

explained by one canonical view. In cases where orthogo-



nality is more important, we add an extra term to the objec-

tive function:

Q(C)=
∑

Vi∈V

(

Vi · Cc(i)

)

− α|C| − β
∑

Ci∈C

∑

Cj>i∈C

(

Ci · Cj

)

This explicitly penalizes pairs of canonical views for being

too similar (see Figure 3(c)).

Without the −α|C| term, the function could be optimized

by a simple modification of the spherical k-means algo-

rithm ([13]) in which the means are restricted to views in

the data set. However, even in the simplified case where |C|
is known, the spherical k-means algorithm performs poorly

when the dimension is large and is extremely sensitive to

the initial configuration (see Figure 3(a)). We avoid this

problem by using the following greedy algorithm, begin-

ning with C = ∅:

1. For each view V ∈ V \ C, compute

QV = Q(C ∪ {V }) − Q(C).

2. Find the view V ∗ for which QV ∗ is maximal.

3. If QV ∗ > 0, add V ∗ to C and repeat from step 1. Oth-

erwise, stop.

At each iteration, we choose the view that will cause the

largest increase in the quality function and add it to the set

of canonical views, as long as this increase is at least α. If

not, we stop. Cornuejols et al. [10] proved that this greedy

algorithm always yields a solution that has quality at least
e−1

e
times the optimal solution, where e is the base of the

natural logarithm. We find that the greedy algorithm (Fig-

ure 3(b,c)) also performs much better in practice than the

standard spherical k-means algorithm (Figure 3(a)), which

has an arbitrarily bad approximation ratio. This algorithm

also frees us from having to choose the number of canon-

ical views in advance, though we do need to specify α.

When using explicit orthogonality penalties, the proof of

approximation bound no longer applies, though we find the

algorithm still works well in practice. We have also exper-

imented with running the standard spherical k-means algo-

rithm initialized with the means chosen by the greedy algo-

rithm. For most of our data sets, this changes very few of

the means, and changes them to nearly identical views, and

we therefore omit this step for the results included in the

paper.

In the next section, we will construct an image brows-

ing application on top of this basic scene summarization

method, extending it to photo collections containing many

scenes, and incorporating user-specified tag data into the

summaries.

5. Image Browsing Application

The photo sharing website Flickr [2] contains over

500,000 photos of the city of Rome, spanning such sites

as the Colosseum (over 11,000 photos), St. Peter’s Basil-

ica (over 8000 photos), and the Trevi Fountain (over 7000

photos). The photos are organized by user-specified tags

and, in some cases, timestamps and geotags. A system for

summarizing and browsing photos using only this data is

handicapped in several ways, as illustrated in Figure 5:

• Some photos are missing relevant tags. A photo of the

Colosseum may be tagged with “rome” but not “colos-

seum”.

• Some photos have tags that are misleading. A user

might tag a set of photos with “vatican” even if some

of the photos were not taken in the Vatican.

• Some photos have tags that are uninformative. A user

might tag a set of photos with “vacation2005”, which

may be useful for the user’s own photo organization,

but useless for creating a summary of Rome that is of

value to multiple users.

• Tags are essentially useless for summarizing or brows-

ing a single scene. In the case of the Trevi Fountain, a

flat index of over 7000 photos is too large to browse,

and the variation among the photos is not reflected in

the tags.

We present a prototypical browsing application using our

scene summaries that resolves all of these issues. The ap-

plication can function in the complete absence of tags, but

when tags are provided, we can extract tags which are likely

to be correct and use them to enhance the browser.

5.1. Organizing the Photos for Browsing

For a single scene, our set of canonical views C, along

with the mapping from each image in V to its most similar

canonical view, can serve as a simple two-level hierarchy

for image browsing. The top level of the hierarchy contains

the canonical views, and beneath each canonical view C is

the set of images V ∈ V such that C is the most similar

canonical view to V .

For larger image collections that span multiple scenes,

we add another level to the top of the hierarchy. We con-

struct the three-level hierarchy in two steps:

1. Find the connected components of the image collec-

tion; each connected component comprises a scene, as

defined in Section 2.

2. For each scene, use the greedy algorithm from Section

4.2.2 to compute the canonical views.

We provide a browseable summary of Rome on our project

web page [1]. A smaller version of the top level of this

summary is shown in Figure 4. Note that image connec-

tivity does not correspond with the semantic concept of a

scene, and connected components is prone to oversegmen-

tation and undersegmentation. In the next section, we in-

troduce a technique for avoiding this problem by exploiting

tag data.
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Figure 4. A segmentation of a 20,000 image Rome data set into the 18 largest scenes, with the best tag associated with each scene. The

tags are computed according to Equation 5.
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Figure 5. Six randomly selected images of the Trevi Fountain, and tags given to each image by Flickr [2] users.

5.2. Incorporating Tag Data

At either the scene or cluster level, we enhance our sum-

maries by displaying one or more tags for each canonical

view. As the user-specified tags associated with each image

may be unreliable (see Figure 5), we look at all images in

the scene or cluster to choose the tags to display. Two main

difficulties arise in selecting appropriate tags:

1. The most popular tags in the cluster may be associated

with a broader concept than the cluster itself. For ex-

ample, the most popular tags for a cluster containing

images of the Pantheon may be “italy” and “rome”.

2. The occurrence of a tag may be highly correlated with

the cluster because of the behavior of a few users. Tags

like “anniversary2005” or “jason” could be strongly

associated with a cluster, but do not help describe the

scene.

We define a function score(c, t) that measures how well

tag t describes cluster c. A first approach might be to choose

tags with large values of P (t|c). However, this falls into the

first trap above, and assigns tags that are correct, but not

very discriminative, like “rome” or “italy”, to most clusters.

One might also consider choosing tags with large values of

P (c|t). This avoids the first problem, but ends up choosing

useless tags that happen to be discriminative, like “anniver-

sary2005”, for most clusters. To resolve both issues, we

compute the score as the conditional probability of the clus-

ter given the tag, independent of the user u (the Flickr [2]

member who took the photograph):

score(c, t) =
∑

u∈U

P (c|t, u)P (u) (5)

For all probabilities, we treat each image as a sample and

count the number of co-occurrences. We therefore define:

P (c|t, u) =

∣

∣{V ∈V | c(V )=c, t∈T (V ), u(V )=u}
∣

∣

∣

∣{V ∈V | t∈T (V ), u(V )=u}
∣

∣

P (u) =

∣

∣{V ∈V | u(V )=u}
∣

∣

∣

∣V
∣

∣



where c(V ) and u(V ) are the cluster and user associated

with view V , respectively, and T (V ) is the set of tags as-

sociated with V . Note that strictly speaking, P represents

frequencies instead of probabilities, as we are only measur-

ing the former. A small issue arises, in that P (c|t, u) will be

undefined when user u never uses tag t. In this case (which

happens frequently), we replace P (c|t, u) by P (c|u). We

use this score function at both the scene and cluster level.

However, for most clusters, accurate tags do not exist or are

rare enough to be indistinguishable from user-specific tags.

Using tags for browsing can avoid problems associated

with the connected components segmentation. For exam-

ple, in Figure 4, the Pantheon is split among multiple seg-

ments, since connecting images are missing. However, in

our browseable index [1], we also allow a user to view the

set of clusters associated with a given tag. Under the “pan-

theon” tag, clusters from both segments appear in the index.

Note that this is not the same as ordinary browsing by tags,

for example on Flickr [2], as in our index many of the im-

ages browseable under the tag “pantheon” were not given

the tag by any Flickr user.

6. Conclusions

We defined the problem of scene summarization, and

provided an algorithm that solves this problem on large im-

age sets. When textual tags are associated with each image,

we can use them to enhance our summaries, in spite of the

large amount of noise in the tags. We also demonstrate an

image browsing application that uses our summarization ap-

proach, and show how scene summaries can serve as portals

into an interactive 3D browser (see our project web page

[1]). Our summaries and image browser allow a user to

quickly navigate a huge collection of images in a way that

was previously impossible, and has the capability to greatly

enhance the experience of browsing photo collections on

Flickr [2] and other photo sharing sites.
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