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Figure 1: A plot of the ratings assigned by humans in our psychology study (mean shown in dark gray, per-frame standard deviation shown
in light gray), and the ratings assigned by our predictive model (cyan) across the frames of a short video sequence. Both series of ratings
have been normalized by their mean and standard deviation. We also show several automatically-selected video frames at peaks (green, top)

and valleys (red, bottom) of our predicted rating.

Abstract

In this paper, we train a computer to select still frames from video
that work well as candid portraits. Because of the subjective nature
of this task, we conduct a human subjects study to collect ratings
of video frames across multiple videos. Then, we compute a num-
ber of features and train a model to predict the average rating of
a video frame. We evaluate our model with cross-validation, and
show that it is better able to select quality still frames than previous
techniques, such as simply omitting frames that contain blinking
or motion blur, or selecting only smiles. We also evaluate our tech-
nique qualitatively on videos that were not part of our validation set,
and were taken outdoors and under different lighting conditions.
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1 Introduction

Cameras sample time very differently than humans do. Still cam-
eras record a frozen moment in time selected by the photographer,
and video cameras record a series of moments captured at short,
regular intervals. Human vision, on the other hand, is constantly
mediated by higher cognitive functions, so that our visual percep-
tion of a moment is decidedly different than what a camera captures.
This difference is perhaps most glaring when the camera’s subject is
the human face. It is remarkable how often a photograph or paused
video frame of a friend depicts an awkward facial expression that
would not be perceived by the human visual system.

While trained photographers are often able to capture the “decisive
moment” [Cartier-Bresson 1952], it would be nice if we could sim-
ply point our computational cameras at people and automatically
acquire only the most desirable photographs. Furthermore, since
modern digital cameras can capture very high-resolution video, it
would also be nice if we could automatically extract the best mo-
ments of people from a captured video. In fact, photographers are
starting to record portrait sessions as high-resolution videos; they
then select the best frames as a post-process (the cover of the June
2009 issue of Esquire magazine depicting Megan Fox was cap-
tured this way [Katz 2009]). In this context, effectively capturing
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the moment becomes a filtering task, i.e., selecting the most desir-
able frames from the very large amount of data. This filtering task
can easily become orders of magnitude more time consuming than
sorting through images taken with a still camera. Simply viewing
10 minutes of video frames captured at 30 frames per second at a
continuous rate of one frame per second would take five hours.

It is especially important in a mobile photography context to be
able to automatically extract and upload only the desired moments
without time spent on user review. The ideal system would adapt
to the goals of the user; some users might want flattering photos
for a social networking profile, while others might want more pho-
tojournalistic, candid photos that effectively communicate the on-
going narrative. The latter problem is especially challenging, since
it is less correlated with the type of expression; angry expressions
effectively communicate angry moments, but they are rarely flat-
tering. Since the scope of this problem is large, in this paper we
focus on the following subproblem: can a computer be trained to
identify digital images of human faces from a video stream that
effectively communicate the moment? To solve this problem, we
collect data by performing a large-scale psychology study, use ma-
chine learning techniques to train a predictive model from this data,
and perform cross-validation to evaluate our results. We focus on
high-quality video, which is appropriate for the target application
of portrait selection. A current limitation of our implementation is
its slow speed; we leave a real-time, on-camera implementation as
future work.

A major contribution of our research is the design and execution of
a large-scale psychology study; in total, we collected 318,240 indi-
vidual ratings of 12,240 video frames depicting 10 actors, from 103
individual human subjects. These videos and ratings are publicly
available on the publication website. Simply asking human subjects
to select desirable photos is highly subjective and would lead to
large variance in the data. Asking subjects to identify good photo-
journalistic, candid images is also problematic, since the standards
of photojournalism are not universally known, and running large-
scale studies with photographers as subjects is cost-prohibitive. So,
we devised a simple scenario that leads subjects to evaluate the in-
formation content of individual expressions. As further described
in Section 3.2, we asked subjects to rate video frames as to how
important they are for helping two people communicate over a very
low-frame-rate videoconferencing connection. Though there is still
significant variance in this data, subjects generally agreed on those
frames that are the most or least important in this scenario (see
Figure 2 for examples). In our opinion, the highly-rated frames
correspond to good candid photos that communicate the moment;
lending credence to this notion, a small-scale study with photogra-
phers shows significant correlation with our large-scale study (Sec-
tion 3.3).

2 Related work

Prior work on selecting quality portraits from video is limited to
identifying posed portraits with predefined desirable and undesir-
able attributes. For example, many commercially available point-
and-shoot cameras use smile detection to trigger the shutter, or
blink detection to alert the photographer to a poor photo. Blink or
closed-eye detection has also been used for filtering quality video
frames in a video chat scenario [Wang and Cohen 2005]. Albu-
querque et al. [2007] used supervised learning to classify images
from a posed portrait session as either good or bad, then later ex-
tended their method to video [Albuquerque et al. 2008] by running
it on each frame independently. Their training data was labeled by
the authors with specific rules: bad portraits have eyes closed or
looking left or right, or have a mouth that is open, speaking, or
showing a smile that is too large. All other frames are labeled good.

In contrast, our training data are collected from participants in a
large scale psychology study, and do not measure adherence to a
predefined set of expressions (e.g., many peaks in Figure 1 do not
follow these rules). We also incorporate temporal context into our
features; as we show in Section 4, features computed over multi-
ple frames are more discriminative for our learning technique than
features calculated from individual frames.

Facial expression analysis is a well-studied topic [Fasel and Luettin
1999; Pantic et al. 2000]. Most of this work is focused on either
recognition of specific expressions, automatic lipreading, or seg-
mentation of facial behavior in video. Most facial recognition sys-
tems use the Facial Action Coding System (FACS) proposed by Ek-
man and Friesen [1978]. Our problem does not call for a FACS-like
system; in contrast to recognizing specific expressions from their
building blocks, we wish to obtain a measure of quality of can-
did photos that generalizes across different facial expressions. The
work most relevant to ours attempts to understand facial dynamics
from features such as optical flow [Essa and Pentland 1995; Mase
and Pentland 1991; Xu and Mordohai 2010], texture, and geome-
try [De la Torre Frade et al. 2007; Zhou et al. 2010].

Finally, we are not the first to conduct human subject studies and
train predictive models for human preferences of visual data. The
most related examples to our work are a predictor of aesthetic rat-
ings of short videos [Moorthy et al. 2010], and visual attractive-
ness of faces [Leyvand et al. 2008; Gray et al. 2010; Whitehill and
Movellan 2008].

3 Data Collection

Our data is composed of (1) a series of videos and (2) human ratings
of the frames in the videos, obtained through a psychology study.

3.1 Video Collection

We recorded ten actors, six female and four male, performing a
wide variety of facial behaviors. Videos include speech, sponta-
neous laughter, the six basic emotions associated with canonical
facial expressions (happiness, sadness, anger, surprise, fear, and
disgust), transitions between expressions, and funny faces. Actors
were recorded against a uniform background and in semi-uniform
lighting conditions. The video was recorded digitally at 30 fps,
1080p. We selected 17 short clips, each lasting 10-40 seconds, for
use in our psychology study and further analysis. These selected
clips include a variety of both dramatic and non-dramatic behav-
ior. All actors participating in this initial data collection phase were
University of Washington students affiliated with the drama depart-
ment, and ranged in age between early 20s to early 30s. Later, a
more diverse set of actors (including older and younger actors, as
well as Computer Science students who had no acting training) par-
ticipated in a second data collection phase that included both indoor
and outdoor environments. We used the videos from this second
data collection phase to qualitatively evaluate our algorithm.

3.2 Psychology Study

We performed a psychology study to measure the perceived ef-
fectiveness of each frame in our video dataset at communicating
the moment. The participants consisted of 103 undergraduate stu-
dents, 53 female and 50 male, enrolled in an introductory psychol-
ogy course at the University of Washington. They were not paid,
but were rewarded with course credit. Because no background in
photography was required for participating in the study, we pro-
vided participants with a relatable scenario inspired by Wang and
Cohen [2005]. Participants were given the following instructions:



Figure 2: Four frames of a video, along with a histogram of the
ratings assigned by participants in the psychology study.

Background: Which frames from a video of a person
speaking and making facial expressions are the most im-
portant for communication? We would like to find out.
Your input in this study will help us understand which
frames are most important and why.

Situation: Imagine that two people are video chatting
over a very slow internet connection. The internet con-
nection is so slow that only one frame from the video
can be transmitted every few seconds. We would like to
transmit only the most important frames from the video
to help the two people communicate.

Instructions: It is your job to decide which frames from
the video are important to transmit to help the two peo-
ple communicate. You will be shown sequential still
frames taken from video where people are communicat-
ing in some way. The person in the video may be ex-
pressing strong emotion, trying to make someone laugh,
or just talking. The video was originally recorded at 30
frames per second.

Rate each frame on a scale from 1 to 4 by pressing the
1, 2, 3, and 4 buttons. Frames rated highly (close to 4)
are more likely to be transmitted. Frames rated poorly
(close to 1) are less likely to be transmitted. Rate a frame
highly (close to 4) if the frame seems important for com-
municating either: 1. the mental or emotional state of the
person in the video —or— 2. a facial expression that the
person in the video is clearly intending to make. Some-
times there is very little movement from frame to frame.
You may assign the same rating to multiple frames in a
row. Try to use all of the possible ratings (1, 2, 3, 4) in
each video sequence.

Subjects were also shown example frames for each rating. Frames
were shown in temporal order, and subjects were allowed to navi-
gate back and forth between frames. We designed the experiment
this way because, in our personal experience, we found it easier
to rate frames if we could see their temporal context. The subjects
did not hear the audio or see the original video. Each subject rated
between four and five video clips, approximately 100 seconds of
video per subject. The order in which full videos were presented
to subjects was randomized. The mean number of ratings per video
frame was 26. However, we manually discarded data from 22 sub-
jects who were clearly not following directions, e.g., repeatedly en-
tering ‘1, 2, 3, 4, 1, 2, 3, 4, ...’ After bad data removal, the mean
number of ratings per video frame was 20.8. Figure 2 shows some
rating histograms for several frames from one sequence.

Averaged over all rated frames, the mean rating was 2.40 with a
standard deviation of 0.93. We found that there was more agree-
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Figure 3: Plots of the ratings assigned by participants in our psy-
chology study (dark gray), and the ratings assigned by professional
photographers (orange) to the frames in Video 1 (top) and Video 6
(bottom). All series of ratings have been smoothed and normalized.

ment on frames with very high or very low ratings: frames scor-
ing in the 95th percentile and up had a standard deviation of 0.76;
frames scoring in the 5th percentile or below had a standard devia-
tion of 0.71. The middle 5 percent had a standard deviation of 0.99.
One of the actors filmed had a full beard, which interfered with the
tracking step in our algorithm. Although we collected rated data
for one video clip of this actor, we exclude this clip from further
analysis. Before further processing, the ratings collected for each
video from each participant were individually normalized by sub-
tracting their mean and dividing by their standard deviation. These
data were then averaged over all participants. Finally, we reduced
noise with a Gaussian lowpass filter of full width half maximum
(FWHM) 0.13 seconds. This processed signal served as input to
our learning step.

3.3 Photographer Study

While our overall goal is candid portrait selection, the instruc-
tions of our large-scale study propose a videoconferencing sce-
nario, since we were concerned that portrait selection among non-
photographers would yield high variance. To what extent does this
methodology choice distort our data? To test this concern, we asked
three professional photographers, two male and one female, to per-
form the same task as in our human subjects study for four of our
videos, but with different instructions; unlike in the psychology
study, photographers did not see any examples of rated frames:

Instructions: You will be shown sequential still frames
taken from a video portrait session. In a video portrait
session, video, rather than still shots, is captured. Later,
the photographer sorts through the still frames and se-
lects those that would work well as still photographs.
The goal of the video portrait session you are about to
see is to capture candid, photojournalistic style portraits.
The person in the video may be expressing strong emo-
tion, trying to make someone laugh, or just talking. The
video was originally recorded at 30 frames per second.
Your job is to rate each frame based on how well it works
as a candid, photojournalistic style portrait.

The scores provided by the photographers were preprocessed using
the same techniques as the scores collected in the psychology study.
Figure 3 shows visual overlays of the scores for two video clips
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Figure 4: Top Left: Original video frame with superimposed
tracked points. Top Right: Face after pose normalization, i.e., auto-
matically cropped, scaled, and adjusted for in-plane rotation. Bot-
tom Left: Computed bounding boxes for eyes, mouth, and eyebrows.
Bottom Center: Computed bounding box for reference patch. Bot-
tom Right: Image and regions used for wrinkle detection. The skin
has been segmented by hue. Regions of interest for wrinkle detec-
tion include forehead, brow furrow, lower eyelids, crow’s feet, and
cheeks.

from these experiments, Video 1 and Video 6. Although there are
some discrepancies, in general, the shape of the two curves match
well. Additionally, we observed large positive Pearson correlation
coefficients of 7¢ = 0.58, 71 = 0.66, 713 = 0.66, and r3 = 0.55
for the pairs of ratings supplied by the professional photographers
and psychology experiment participants (the subscript of r refers to
the video ID). The results of this short experiment suggest that ask-
ing the general population to select frames that help people commu-
nicate is a reasonable proxy for having professional photographers
rate frames based on how well they work as candid, photojournal-
istic portraits.

4 Predictive Model

The result of our human subjects study is a series of video frames,
each with a distribution of ratings from 1 to 4. Our next step is to
train a predictive model that can predict the expected rating of a
video frame. Our algorithm first tracks the faces in the video, and
then normalizes the faces to canonical positions using the tracking
data. Then, we compute a series of features that are designed to
measure properties that we observed to be correlated with the rat-
ings. Finally, we use supervised learning to train a model to predict
arating given a feature vector.

4.1 Tracking and pose normalization

Face tracking and pose normalization is an essential pre-processing
step for feature extraction. We use the face tracker described by
Saragih et al. [2009]. This tracker computes six global parameters
representing head position and orientation, as well as the locations
of 66 points on the face: 12 on the eyes, 10 on the eyebrows, 18 on
the mouth, 9 on the nose, and 17 on the jawline (Figure 4, top left).
We use the global parameters to normalize and resample each frame
for scale (we use 480 x 480), translation, and in-plane rotation (Fig-
ure 4, top right). We then use the tracked points to locate bounding

boxes of regions of interest on the face, including the eyes, mouth,
eyebrows (Figure 4, bottom left), forehead, cheeks, lower eyelids,
crow’s feet (wrinkles extending from the outer corners of the eyes),
cheeks, and brow furrow (Figure 4, bottom right). Details of how
the extents of each bounding box are computed from the locations
of tracked points can be found in the pseudocode included with our
supplementary material.

In addition, we use the color information in reference patches (Fig-
ure 4, bottom center) in the upper cheek regions to determine the
average hue of the face. The horizontal extents of the patch are
determined by the left- and right-most eye points, while the ver-
tical extent is 20 to 50 pixels below the bottom eye point. The hue
within the reference patch is used to find a binary mask of areas of
the image with matching skin color, i.e., all pixels within an angu-
lar distance of 3.6 degrees to the reference patch mean in the hue
component of HSV color space. Erosion with a 6 X 6 structuring el-
ement followed by dilation with a 3 X 3 structuring element is used
to clean up the mask. This binary mask is used to remove non-skin
pixels in the regions of interest when computing some features, for
example, features based on wrinkles (Figure 4, bottom right).

4.2 Features

Through manual inspection of the video data, we observed that the
following properties were correlated with higher ratings: (1) inten-
sity of expression, with the natural apex of an expression given the
highest relative rating within a sequence of frames; (2) pauses or
changes of direction in the motion of the facial muscles, which of-
ten corresponds to either the apex of an expression or a pause be-
tween expressions; (3) wide smiles and other dramatic expressions
that bare the teeth tend to be given high ratings.

We observed that the following properties were correlated with
lower ratings: (1) reductions in visual clarity of the expression
caused by blinking, motion blur, or the head turned away from the
camera; (2) fast head motion causing blur or distortion of the face;
(3) motion of the facial muscles or mouth, which often indicates an
expression transition or talking.

We therefore designed features to measure these properties, while
also being mindful of several other design guidelines: (1) features
should generalize well across different people, i.e., be indepen-
dent of age, skin color, and other human variations; (2) features
should be robust to occluders like facial hair and glasses; (3) fea-
tures should generalize across expressions. For example, a feature
that detects peaks in facial dynamics should work equally well for
smiles and winces.

With these factors in mind, we designed six basic features that fall
into two categories: features based on motion, and features based
on texture. Initially, all features are computed based on information
from only the current or immediately surrounding frames, using the
techniques described in more detail below. After the initial feature
computation, we normalize all features per video by subtracting the
temporal median and dividing by the temporal mean absolute de-
viation. Normalizing the features in this way allows us to measure
relative changes over time and account for differences among actor
appearance and video quality. Finally, each feature is convolved, in
the time domain, with a set of averaging and edge-detecting ker-
nels. This filtering step adds temporal context to the features com-
puted at each frame, and the result of each of these filtering oper-
ations is used as an additional feature. The specific set of kernels
we use includes Gaussian lowpass filters of full width half maxi-
mum (FWHM) 0.98 seconds (later referred to as the “long lowpass
filter”), 0.38 seconds (“medium lowpass filter”), and 0.16 seconds
(“short lowpass filter”), a signum function with support 0.5 sec-
onds, and a ramp function of support 0.5 seconds. In our videos, 1



second = 30 frames. We also use the original, unfiltered features in
our training step. The result is a 36-component feature vector that
is used to train our predictive model. We now describe the meth-
ods used to compute each feature. All features are computed on the
output of the pose normalization step described in Section 4.1.

Motion-Based Features. Motion-based features are computed us-
ing the optical flow algorithm of Sand and Teller [2006] within
patches of interest. Pose normalization removes most of the gross
head motion from the optical flow, but this normalization can have
errors. Thus, we additionally compensate for head motion by sub-
tracting the average optical flow over the corresponding reference
patch (described in Section 4.1) from the average optical flow of
the patch of interest. For example, to measure left eye motion, we
take the difference of the left eye patch average flow and the left
reference patch average flow. The L1-norm of this difference is the
optical flow score for that patch; flow scores are then mapped to
feature values, as described in the subsections below.

Feature 1: Blink and eye motion detection. We compute the op-
tical flow score for each eye region and average the result to give
the feature value; if only one eye is visible, then the score for that
eye is used. Minimal optical flow indicates that either the eyes are
open and focused on a target, or closed, but not blinking. To account
for the fact that the eyes do not appear intentionally focused or fix-
ated in the frames just before and just after a blink, this feature is
low-pass filtered over a window of three frames before further pro-
cessing. An example of this feature is shown in Figure 5.

Feature 2: Mouth motion detection. We compute the average op-
tical flow within regions for the center, left corner, and right cor-
ner of the mouth. A large optical flow magnitude indicates that the
mouth is moving relative to the rest of the face.

Feature 3: Facial feature motion detection. To measure overall
facial feature motion, we sum the optical flow magnitudes for the
cheeks, regions surrounding the mouth, and eyebrows. In a facial
action such as an eyebrow raise, the optical flow of the facial feature
is at a minimum when the expression is held momentarily, the peak
activation of the facial action.

Texture-Based Features. Texture-based features are computing us-
ing Gabor filter responses and gradient magnitudes within patches
of interest that have been converted to grayscale. In addition to de-
tecting important textures on the face, such as wrinkles and teeth,
these features serve the additional purpose of producing a very low
response when the image of the face is blurry.

Feature 4: Whole face texture feature. For each frame, we com-
pute Gabor filter responses on grayscale images at four scales and
eight orientations in regions of the face known to wrinkle: the fore-
head, brow furrow, crow’s feet, lower eyelids, and smile lines. We
then average the magnitude of all filter responses in all regions to
produce a single scalar feature for each frame that is high when
the subject has a lot of facial wrinkles, and low when the subject
has fewer facial wrinkles. An example of this feature is shown in
Figure 5.

Feature 5: Upper face texture feature. This feature measures spe-
cific directional wrinkles that form in the upper face region. Us-
ing the mean gradient magnitude, we measure the horizontal wrin-
kles that form in the forehead, for example when the eyebrows are
raised, and the vertical wrinkles that form in the furrow of the brow.

Feature 6: Teeth detection. Since the display of teeth is an impor-
tant feature of several expressions, most notably smiles, we com-
pute a feature that produces a high response when the teeth are
shown. We measure the mean absolute value of the horizontal im-
age gradient within the mouth region. This feature is high when the
the edges of the teeth are visible.

Face Texture Feature

Blink Feature

| Predicted Score

i
A’\/\V\

Frame Number —

Figure 5: Top: Whole face texture feature (upper), blink and
eye motion feature (middle), and overall predicted score (lower)
tracked over time for a short video clip. Bottom Left: Frame with
the highest value for the blink feature, which negatively contributes
to overall score. Bottom Right: Frame with the highest value for the
whole face texture feature, which positively contributes to overall
score. Note that the blink feature does not have a high value at the
bottom right frame because the eyes are narrow for an extended
period of time.

We also experimented with features based on locations of tracked
points, parameters returned by the tracker, as well as facial symme-
try. However, we found that these features were not robust enough
for our purposes. For example, the geometry of the mouth was not
tracked accurately and consistently enough to derive expression
information from the tracked points alone. However, the tracked
points did provide enough information to localize the mouth so
that our features could be computed within the correct region. Fi-
nally, we ignore the computed features for frames where the tracker
failed. The tracker reports whether it was successful at each frame.
In the cases where it failed, we set the feature values to their medi-
ans. In our validation set, there are only a few frames where tracker
failure was an issue.

4.3 Learning

The features computed in the previous section comprise a 36-
component vector describing each video frame and its temporal
context; the next step is to perform regression to predict a mean
rating from a feature vector. We experimented with probit and lo-
gistic regression [McCullagh and Nelder 1989], LASSO [Tibshirani
1996], and Gaussian processes [Williams and Rasmussen 1995]; we
found that probit regression achieved the lowest error. Our human-
provided mean scores are scaled linearly to [0, 1] on a per-video
basis before being passed into the regression algorithm.

According to the feature weights learned by our regression system,
the top 10 most influential features were as follows: (1) blinking
feature, long lowpass filter. (2) mouth motion feature, long lowpass
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Figure 6: Top: Eight highest-scoring peak frames in the score predicted using our method for Video 6. Middle: Eight highest-scoring peak
frames in the mean human score from the psychology study for Video 6. Bottom: Eight highest-scoring peak frames in the mean score from
the photographer study for Video 6. All sets of frames have been sorted temporally.

Figure 7: Examples of frames with the highest automatic score from
very expressive video clips. Top Left: Frame captured while smiling
and talking. Top Right: Frame captured while gesturing and telling
a funny story. Bottom Left: Frame captured while laughing. Bottom
Right: Frame captured while acting out the emotions of surprise
and disgust as part of a funny story.

filter. (3) blinking feature, medium lowpass filter. (4) whole face
motion feature, medium lowpass filter. (5) mouth motion feature,
medium lowpass filter. (6) upper face wrinkle feature, medium low-
pass filter. (7) upper face wrinkle feature, short lowpass filter. (8)
blinking feature, short lowpass filter. (9) whole face wrinkle feature,
short lowpass filter. (10) mouth motion feature, short lowpass filter.
In general, the long, medium, and short lowpass filtered versions
of the base features were the most influential. The noisy, unfiltered
versions of the base features were less influential, and the 1D edge
detecting filters were least influential. However, adding all of these
features positively impacted the learning results.

4.4 Evaluation

We evaluate our predictive model with cross-validation experiments
on 16 videos that were rated by participants in the psychology
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Figure 8: Two highest scoring (top) and two lowest scoring (bot-
tom) frames from a video portrait shoot.

study. During each fold of validation, we exclude any videos from
the training set that feature the same actor as the test video. We
compute the mean squared error (MSE) between the predicted and
human-provided scores for the test and training sets. As a baseline,
we predict the mean of the training set for every frame and com-
pute the MSE. Averaged over all validation folds, we saw a me-
dian 31 percent reduction in MSE for the test sets, and a median
34 percent reduction in MSE for the training sets compared to the
baseline. Full numerical results for all videos in the validation set
are provided with the supplementary material. To select individual
frames from a continuous score, we use a peak detection algorithm,
peakdet', then return the N top-scoring peak frames.

Figures 1 and 6 show example results that have been sorted tempo-
rally for videos 3 and 6 from our validation set. Figures 5, 7, 8, and
9 demonstrate the results of our algorithm on videos that were not
part of the validation set, and were recorded outdoors with a hand-
held camera. Many of the frames selected as top peaks fall outside
of the criteria defined as “good” by Albuquerque et al. [2007] (these

'http://www.billauer.co.il/peakdet.html
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Figure 9: Three highest scoring (top) and three lowest scoring (bot-
tom) frames from a video of an actor singing a humorous song.

Peak Frames with Non-Smiling Expression or Closed E: esr

L

Valley Frames Without Blinking or Motion Blur

Figure 10: Top row: high-scoring peak frames that would not
meet the criteria for “Good Frame” defined by Albuquerque et
al. [2007]. Bottom row: low-scoring valley frames that do not con-
tain the obvious artifacts of blinking or motion blur.

criteria include open eyes looking at the camera, with a neutral or
slightly smiling mouth). The top row of Figure 10 shows frames
selected as top peaks by both psychology participants and our algo-
rithm that do not meet these criteria. The bottom row of Figure 10
shows examples of frames rated poorly by both humans and our al-
gorithm that do not contain the obvious detractors of blinking and
motion blur. The bottom center frame fails as a portrait because
of the slightly defocused eyes, which were moving in the original
video. Albuquerque et al. [2007] would likely classify this frame
as “good.” Figure 7, Bottom Left depicts the subject laughing with
closed eyes; the top row of Figure 1 shows similar frames that were
rated highly by users. Figure 7, Bottom Right shows a peak frame
taken from a video of an actress expressing surprise and disgust
while telling a funny story. While this expression is not particularly
flattering, it is the apex of an expression that conveys the intent of
the actress and the content of the story she is telling. Full sets of
results, along with the original video clips, can be found in our sup-
plementary materials.

In Figure 11, we compare the results of our algorithm to simply re-
moving all frames that contain blinking or motion blur for video 6
from our validation set. The histogram of normalized mean human
ratings is shown for the video in both the upper and lower parts of
the figure. In the top histogram, all frames that contain blinking or
motion blur (detected manually) are highlighted in red (for these
frames, mean human rating = -0.43, std. dev. = 1.03). All other
frames are highlighted in green (mean = 0.09, std. dev. = 0.97).
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Figure 11: Comparison of selecting best and worst frames using
manual blink and motion blur classification versus our method.

In the bottom histogram, we use our method to predict the bottom
15 percent of frames, highlighted in red (mean = -1.13, std. dev. =
0.65), and top 15 percent of frames, highlighted in green (mean =
1.03, std. dev. = 0.80). For a perfect predictor, the highlighted re-
gions would perfectly correspond to the tails of the distribution. The
comparison of the two distributions shows that while blinking and
motion blur are correlated with low scores, they are less accurate
predictors of human score than our method. Furthermore, frames
containing blinking and motion blur comprise only a small fraction
of the total frames in the video (about 20 percent in this case), so
one is still left with a challenging quality filtering task after remov-
ing them.

4.5 Limitations

Our predictor will not perform well if the face tracker fails to ac-
curately track the face. We have found the tracker to be fairly ro-
bust to video resolution, lighting and skin tone variation, as well
as some occluders including moderate facial hair (as shown in Fig-
ure 9), hair falling into the face, and glasses. However, the tracker
often fails in the presence of other occluders, including thick beards
and hands obscuring more than a third of the face. As face trackers
improve, we hope to leverage this technology to expand the input
domain of our system. For our system to work on subjects with full
beards, we may find that we need to train specifically for this case,
or modify our texture features around the mouth. The tracker and
other aspects of the algorithm will also fail on heavily compressed



videos and interlaced videos. Since frames taken from these de-
graded videos would not make good portraits, we opted to evaluate
our results on only high quality video.

Because we consider our current implementation a prototype, we
made no attempt to optimize for speed. However, we anticipate that
it should be possible to create a real-time implementation in the
near future. In our implementation, processing takes on the order
of minutes per frame, but is performed concurrently, so that pro-
cessing an entire video clip also takes on the order of minutes or
tens of minutes, depending on the length. The bottlenecks in our
implementation are the computation of optical flow and the Ga-
bor filter responses; both of these operations have been computed
in real-time in other implementations. In our prototype system, we
compute these metrics on the entire frame as a pre-processing step;
a speed-optimized implementation would limit the regions of com-
putation to specific areas of interest. While we hope that our tech-
nique can soon be implemented in real-time on a computational
camera, we would also like to emphasize the utility of the offline
implementation that selects portraits from pre-recorded video.

5 Conclusions and Future Work

In this paper, we explored whether an algorithm can perform a
task that is subjective yet fairly straightforward for a human: select
frames from a video of a human face that effectively communicate
the moment and work well as candid portraits. To automate this
task, we collected a large dataset of human ratings, and trained a
predictive model to select those frames that are most or least effec-
tive as candid portraits. While our algorithm can currently be used
as a post-process filter on video portrait sessions, we also hope that
the release of our data and algorithm will lead to a real-time, on-
camera implementation.

Furthermore, we believe that our methods are a step in an excit-
ing direction. Models of human perception are becoming increas-
ingly important in automated computer graphics, but human per-
ception is notoriously challenging to model and understand. While
our specific features are tuned to faces, we believe that our over-
all methodology could be applied to many related problems. For
example, an extension of our method would be to use full-body
motion and texture features to predict perfectly-timed action shots
of athletes and dancers. More generally, human visual preferences
are important but tricky to model; we think performing large-scale
human studies plus machine learning is the right way to create ef-
fective perception-aware algorithms.
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