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Stochastic Delayed Bandits
Theorem 1. For algorithm 1 in the paper with any
choice of procedure GETSAMPLINGDIST and any on-
line bandit algorithm BASE,

E [RT ] ≤ E
[
RBASE

T

]
+

N∑
i=1

∆i E [Si,T ] (1)

where Si,T is the number of elements pulled for arm
i by time T , but not yet shown to BASE.

Proof. Let T ′ be the number of times we have updated
BASE. Note that since the samples fed to BASE were
drawn iid according to the arm distributions and given
on the arms it requested, the regret on these samples
is RT ′ . Clearly T ′ ≤ T since for every sample we give
BASE, we must have correspondingly taken a step in the
true environment1. So the expected regret of only those
steps in which we update BASE can be upper bounded
by

E
[
RBASE

T

]
. (2)

Now we must consider those timesteps for which we
requested a sample but have not given it to BASE by
time T . The number of such samples from arm i is ex-
actly Si,T . So the regret on these timesteps is equal to

N∑
i=1

Si,T∑
j=1

ρi,j (3)

Where ρi,j denotes the regret of the jth sample not
passed to BASE for arm i. Taking the expectation gives
us:

N∑
i=1

E

Si,T∑
j=1

ρi,j

 (4)
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We also make the trivial assumption that the provided regret bound monotonically

increases with T .

By Wald’s equation this is:

=
N∑
i=1

E [Si,T ]E [ρi,j ] (5)

=

N∑
i=1

E [Si,T ] ∆i (6)

Combining this with equation (2) gives us the re-
quired bound.

Theorem 2. For SDB,

E [RT ] ≤ E
[
RBASE

T

]
+Nτmax (7)

in the online updating setting, and

E [RT ] ≤ E
[
RBASE

T

]
+ 2Nτmax (8)

in the batch updating setting.2

Proof. First note that on all timestepsBt ≤ τmax, since
B1 = 1 and τmax ≥ 1 and for all t > 1, Bt is equal to
the empirical max delay.

We will now show that in the online updating case,
Si,t when running SDB never exceeds τmax. Clearly
Si,0 = 0 and so the bound holds in the base case. As-
sume Si,t ≤ τmax at t, and we will prove it for t+1. Let
It denote the value of variable I in the SDB algorithm
at time t. For arms j 6= It,the algorithm sets pjt = 0 if
Sjt ≥ Bt, and sinceBt ≤ τmax we cannot add samples
such that Sj,t+1 > τmax. So only SIt,t+1 can be greater
than τmax. However, we know QIt must be empty, or

2
One small technical comment: Note that τmax = 1 refers to the case of no delay,

since the arm pulled at time t is observed at time t + 1. It appears that Joulani et. al. 2013
used τmax = 0 to denote no delay, so there is an off-by-one difference in τmax between

our papers. This difference simply results in the SDB bound E
[
RBASE

T

]
+

∑
i ∆i ∗

cτmax becoming E
[
RBASE

T

]
+

∑
i ∆i ∗ c(τmax + 1) if we use the definition of

Joulani et al., so in the worst case the online updating regret bound of SDB differs by at most
N from that of QPM-D. This very small difference in the bounds could be eliminated by
simply modifying the update of B in SDB to calculate maximum delay minus one instead
of maximum delay, with a negligible effect on the performance of the algorithm. The only
remaining issue would be that the +N term would remain in the no-delay case since B is
initialized to 1, however, the regret bounds would be the exactly same in the case of nonzero
online updating delay.



variable I could not be set to point to it. But if we have
more than τmax samples assigned to It and not yet ob-
served, one must have been assigned more than τmax

steps ago, meaning the delay must be greater than τmax,
a contradiction. So SIt,t+1 also cannot be greater than
τmax.

So we have shown that Si,t ≤ τmax for all i and t in
the online updating case. Plugging into Theorem 1 and
observing that ∆i ≤ 1 gives us the stated bound.

Now we will show Si,t ≤ 2τmax in the batch update
case. Note that in this case we refer to timesteps from
the perspective of batches, where after every batch the
timestep increments. Let Bt be the value of SDB vari-
able B at time t.

Assume Si,t ≤ 2τmax at t, and we will prove it for
t+ 1.

For arm It, QIt must be empty before the batch
begins, so SIt,t = 0 since we have assumed all re-
wards from each batch are observed upon its comple-
tion. Since the batch size cannot be larger than τmax

it follows immediately that SIt,t+1 ≤ τmax ≤ 2τmax.
We now consider arms i 6= It.

In the case where Si,t ≥ Bt and i 6= It, SDB sets
pi,t = 0, so Si,t+1 = Si,t ≤ 2τmax.

If i 6= It and Si,t < Bt, we know Bt < τmax, so
Si,t < τmax. So since the batch size cannot be larger
than τmax, Si,t+1 ≤ Si,t + τmax < 2τmax.

So we have shown that Si,t ≤ 2τmax for all i and t in
the batch updating case. Plugging into Theorem 1 and
observing that ∆i ≤ 1 gives us the stated bound.

Lemma 1. In the mixed case where we update in
batches, but not all elements are guaranteed to return
before the end of the batch,

E [RT ] ≤ E
[
RBASE

T

]
+N(τmax + 2βmax) (9)

for SDB, where βmax is the maximum size of a batch.

Proof. Observe that in this setting, while τmax is the
maximum delay of a sample before it returns, the max-
imum delay before we can process it is βmax + τmax,
since there are at most βmax steps between when a sam-
ple returns and when we can process it.

Let t refer to the timesteps on which updates occur.
Let It denote the value of variable I in the SDB algo-
rithm at time t, and similarly for B.

Clearly Si,0 = 0 and so the bound holds in the base
case. Assume Si,t ≤ 2βmax + τmax at time t, and we
will prove it for t+ 1.

In the case i = It, we know that QIt is empty at
time t. Therefore, SIt,t ≤ τmax since if we have more
than τmax samples assigned to It and not yet observed,
one must have been assigned more than τmax steps ago,
meaning the delay must be greater than τmax, a contra-
diction. The most we can put in before the next update
is βmax, so SIt,t+1 ≤ βmax + τmax ≤ 2βmax + τmax.

In the case where i 6= It and Si,t ≥ Bt, SDB sets
pi,t = 0, so Si,t+1 = Si,t ≤ 2βmax + τmax.

If i 6= It and Si,t < Bt, we knowBt < τmax+βmax,
so Si,t < τmax + βmax. So since the batch size cannot
be larger than βmax, Si,t+1 ≤ Si,t + βmax < τmax +
2βmax.

So we have shown that Si,t ≤ τmax + 2βmax for all
i and t. Plugging into Theorem 1 and observing that
∆i ≤ 1 gives us the stated bound.

Comparison to prior work
Joulani et al. 2013 proposed a closely related algo-
rithm QPM-D. If we extend their online updating anal-
ysis to the batch updating cases, their algorithm has
a regret bound with a an additive term of Nτmax in
the online updating and batch updating settings and
N(τmax + βmax) in the mixed setting. Hence we see
that SDB matches the bound of QPM-D in the online
updating setting, but the additive term worsens by at
most a factor of two when updates come in batches.
Creating an algorithm that retains the bound of QPM-
D in the batch case but also retains most of the empir-
ical benefit of SDB is an important direction for future
work.

Delay with Online Updating results
Due to space limitations, we were unable to include
both the batch updating and online updating results in
our paper.

The online updating case is relevant in many situa-
tions, and the comparison between SDB and QPM-D
is a bit fairer because both possess the same theoretical
guarantees in this case. Below we repeat the same ex-
periments as in the batch case, the only difference being
that each algorithm can update its distribution after each
step instead of in batches.3

Figures 1a-1f show the results running SDB in the
online updating case in a variety of simulations (see pa-
per for explanations of the environments used). Fig-
ure 2 gives the results on actual data using our unbiased
queue-based estimator. We see much the same results
as we did in the batch updating setting, showing good
empirical performance in a variety of scenarios. One
notable difference is that in the UCB figures (1d and
1e) we see that SDB has essentially “smoothed” out
performance, eliminating the the troughs of very poor
performance. The reason for this is that in the online
case, if the heuristic chooses an arm to pull, SDB will
initially allow it to put full probability mass on that arm,
but then smoothly decrease the amount of probability it
is allowed place on that arm, shift the remainder to the

3The distribution of Uniform, QPM-D, UCB, UCB-Strict,
and UCB-Discard does not change if new data is not observed,
so their performance should be the same as in the batch updat-
ing setting. Therefore, we did not re-run those algorithms.
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Figure 2: Results (using our queue-based estimator) on
educational game data. SDB sees major improvements
by leveraging the heuristic.

arm(s) recommended by BASE. Hence instead of just
pulling one arm per batch, in an online updating set-
ting SDB can spread mass between multiple arms, even
given deterministic black-box algorithms.

Sample-Efficient Unbiased Offline Bandit
Evaluation

Theorem 3. Queue Replay Evaluation estimates are
unbiased conditioned on the fact that the algorithm pro-
duces a sequence of actions for which we issue esti-
mates. Specifically,

E [rt|s ∈ Ut] =
∑

s′={i,...,j}∈Ut

p(s′|s′ ∈ Ut, θ)µj

.

Proof. The proof builds on Lemma 4 in (Joulani, Gy-
orgy, and Szepesvari 2013). We can prove this by in-
duction: At the initial step, the probability of the se-
quence and the expected value of the estimate at time 0
are trivially the same as in the real environment. Now,
at time t, we know that the probability of seeing any
past sequence of samples s′′ is p(s′′|s′′ ∈ Ut−1, θ),
and we also know all t − 1 past estimates were issued
with the correct prediction. So take any one of those se-
quences s′′ (of length t− 1). Now, the distribution over
states of the algorithm given the past sequence of pulls
is identical to the true system, since the state of the al-
gorithm is defined by the past sequence of pulls and the
rewards, and rewards were drawn iid from each arm.
Therefore, p̂(j pulled|s′′) = p(j pulled|s′′), where p̂
denotes the probability when running the queue-based
evaluator. Therefore the probability of extending any
s′′ ∈ Ut−1 to any t-length sequence s′ is the same as
in the real environment, that is p̂(s′|s′′ ∈ Ut−1) =
p(s′|s′′ ∈ Ut−1). Therefore the marginal distribution
p̂(s′|s′′ ∈ Ut−1, s

′ ∈ Ut) = p(s′|s′′ ∈ Ut−1, s
′ ∈ Ut).

Now, given s′ ∈ Ut, s′′ ∈ Ut−1 since we must have
not hit the end of the queue on step t − 1 as well, so
p̂(s′|s′ ∈ Ut) = p(s′|s′ ∈ Ut). Finally, if we pull arm
j, the result is iid, so the expectation of rt is µj .
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(a) Comparing to QPM-D with Thomp-
son Sampling as the black-box algo-
rithm.
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(b) Comparing to heuristics with
Thompson Sampling as the black-box
algorithm.
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(c) An example where the heuris-
tic Thompson-Batch-0.01 performs
worse.
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(d) Comparing to QPM-D using UCB
as the black-box algorithm.
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(e) Two example algorithms that per-
form poorly when handed all samples
but well inside SDB.
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(f) An example of a case where handing
a prior dataset from a poor arm hurts
Thompson-Batch but not SDB.

Figure 1: Simulation Results. SDB-thom-X refers to running SDB with Thompson-1.0 as the BASE algorithm and
Thompson-X as the HEURISTIC algorithm, and likewise for UCB.
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