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Abstract

There exists a large body of research devoted to creating real time interactive locomotion controllers which are
targeted at some specific class of character, most often humanoid bipeds. Relatively little work, however, has been
done on approaches which are applicable to creatures with a wide range of different forms – partially due to
the lack of easily obtainable motion-capture data for animals and fictional creatures. We show how a locomotion
controller can be created despite this dearth of data by synthesizing it from scratch. Our method only requires as
input a description of the shape of the animal, the gaits which it can perform, and a model of the task or tasks
for which the controller will be used. From this a sequence of motion clips are automatically synthesized and
assembled into a motion graph which defines a physically realistic controller capable of performing the specified
tasks. The method attempts to minimize the computational time required to generate this controller and we show
its effectiveness at creating interactive controllers for a range of tasks for bipeds, tripeds, and quadrupeds.

1. Introduction

With the emergence of motion capture and the data-driven
methods for interactive controller construction, humanoid
motion has enjoyed a considerable body of research. Tech-
niques have been developed which allow motion capture
data to be assembled into graph-like structures that support
real time interactive control. More recent advances make use
of reinforcement learning to automate the logic of determin-
ing which motions to use to perform a task, and recent years
have seen large strides in controllers which can be run di-
rectly inside of a physics simulator. Unfortunately, current
techniques for character animation either require a database
of pre-captured motion from which to construct the con-
troller, are limited to humanoid bipeds, or require the effort
of an expert designer in order to construct the controller.

Our controller generation technique takes as input a descrip-
tion of the shape of an animal and a model of the tasks
for which the controller will be used. From this, we auto-
matically build a graph of interconnected motions such that
by traversing different paths through this graph the required
tasks can be performed. For instance, a controller designed
to follow a given direction would consist of various con-
nected walks and turns. This technique works for a wide
range of different animal types without any motion data or
manual tuning being required.

Since we do not assume access to any pre-specified informa-
tion on how the animal moves, there are several challenges
which must be overcome to accomplish this. Firstly, not all
combinations of motions into a graph will create controllers
which perform a task equally well. Indeed, it appears that
even that task of selecting a set of motions from an existing
database to create a controller is difficult to achieve [LLP09].
On the other hand, we must also contend with the difficulty
of actually creating the individual motions from which the
graph is built. This is particularly difficult because new mo-
tions are most easily created by modifying similar existing
motions, but controllers are often best constructed from a
highly dissimilar set of motions. Thus the choices needed to
quickly build highly effective controllers must be balanced
against possible difficulties in actually creating these mo-
tions.

We approach this problem by synthesizing both the individ-
ual motions used in a motion graph as well as their con-
nectivity with a technique combining aspects of spacetime
constraints with ideas from optimal control. This approach
considers not only how effective the resulting graph will be
at performing a set of user-specified tasks, but also an esti-
mate of the difficulty in solving for the individual motions
from which it is constructed. Furthermore, as new motions
are added they are used to improve the ability to solve for
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future motions, allowing an effective controller to be incre-
mentally constructed.

2. Related Work

Locomotion behaviors are challenging to create because
they must both nimbly respond to varying tasks and faith-
fully synthesize motions that accomplish them. One way to
proceed is to rely on motion data [BW95, WP95], motion
graphs [LCR∗02, AF02, KGP02], or other parametric struc-
tures derived from motion data [SO06, HG07, KG04]. A re-
cent research trend is use reinforcement learning to automate
the runtime task of selecting which data clips to play in what
order [LL04,LK05,TLP07,MP07,LZ08], or how to navigate
in a continuous abstract motion space [LWB∗10, LWH∗12]
in order to comply with user-specified tasks. These methods
explain how to compose responses by flexibly following pre-
captured motion sequences, but they do not establish meth-
ods for constructing such motions for arbitrary characters.

Because of their predictability and generally speedy run-
time performance, these kinematic behaviors are routinely
employed in computer games. Although most of these ap-
proaches are limited to directly playing back pre-recorded
data, one notable exception to this is given in [HRE∗08]. In
this approach an artist designs motions using an interface
that explicitly aids in making these motions retargetable to a
wide range of different creatures. Although both this and our
approach can construct controllers for many different crea-
ture types, they differ in two primary ways. Firstly, although
the controllers generated with our approach are kinematic,
any motions generated by these controllers are physically
accurate. Secondly, we do not rely on a database of artist-
generated motions but instead create the motions directly
from the shape of the animal.

Other approaches [FvdPT01, SKL07, CBvdP09, WP10,
MdLH10, WHDK12] leverage rapid advances in the design
of control strategies for walking, running, and other motion
primitives [RH91,HWBO95,HP97,WH00,CBYvdP08,CB-
vdP10, dLMH10]. Recent advances have also enabled dy-
namic quadruped controllers [CKJ∗11] with a wide range of
simulated gaits and skills. Although the variety and quality
of the motions generate by this technique are impressive, it is
not a general-purpose controller synthesizer that can be ap-
plied to an arbitrary animal since, aside from being limited to
quadrupeds (demonstrated on a dog), constructing the con-
trollers requires either motion capture data or a careful tun-
ing of parameters. Our approach differs from existing ones
in that it requires no data or manual tuning, yet can be ap-
plied to a wide range of different animals.

Trajectory synthesis with spacetime constraints offers an-
other promising direction. For our task, methods that con-
struct motions from constraints alone are more relevant
[WK88, FP03, MTP12] than methods that transform motion
data [PW99, LHP05, RGBC96, SHP04, LYvdP∗10]. In par-

ticular, the methods for synthesis of animal gaits [WP09,
NCNV∗12] and motion transitions [CRS10] hint at the pos-
sibilities for automatic computation of locomotion behav-
iors. In this paper, we show how to go beyond the com-
putation of steady-state animal gaits by synthesizing mo-
tions with turning and varying gait transitions. We then com-
bine these optimizations with an outer loop that builds and
chooses which motions to generate in order to build a loco-
motion behavior.

3. Building Locomotion Controllers

Basic Definitions The input to our method is given as an
animal, specified as a kinematic tree of limbs connected
by joints. Each joint defines a parameterized transformation
from its parent limb to its child limb, and there is an addi-
tional ‘joint’ specifying the global position and orientation
of the character’s root. A concrete pose for the animal is
specified by a vector of degrees of freedom (DOFs) giving
the parameters of each joint. A sequence of such vectors,
along with information about when each foot is in contact
with the ground forms a motion clip, denoted M. We refer
to an individual frame fi in a motion by M( fi). When we
wish to index into a motion by a continuous time parameter
rather than at a discrete frame, we instead use the notation
M(t), which is linearly interpolated from the pair of frames
surrounding t. We denote a motion graph with G. The nodes
in this graph are equivalent to frames in a motion, and we let
G( fi) refer to such a node. The edges in a graph represent
frames which can be transitioned between, and also store the
relative 2D transformation which the root of the character
undergoes during the transition. Throughout our controller
construction process we will also find it useful to create ap-
proximations of various quantities. Such approximations are
signified by a t̃ilde.

3.1. Controller Optimality

Our approach attempts to create a controller which is optimal
with respect to a combination of energetic efficiency and the
ability to adeptly adeptly satisfy the user’s commands. This
controller is constructed from a set of motions, M1, . . . ,Mn
interconnected into a single graph G. Each branch in this
graph corresponds to a point where the character has a
choice in its future motion, the goal being to pick the mo-
tions which best comply with the user’s commands.

Because this approach solves for both the individual motions
in the controller and the global structure of the motion graph
build from these motions, it is necessary to have a definition
of what an ‘optimal motion graph’ is which encompasses
both of these aspects. To this end, we define an objective
function which combines features from both spacetime con-
straints and optimal-control approaches to animation. First
we will describe an optimization formulation which allows
for the synthesis of individual motions, after which we will
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show how this formulation can be extended to the optimiza-
tion of an entire motion graph.

Motion Optimality It is useful to begin by considering how
to generate single motions offline. One technique for achiev-
ing this which has been successful in generating motions for
a wide range of animals is the method of spacetime con-
straints [WK88, WP09]. This approach specifies a motion
as the minimum of a large constrained optimization prob-
lem. We restrict our attention to the most common formu-
lation, which represents the objective function as a sum of
per-frame costs and specifies the constraint functions inde-
pendently for each frame. Assuming that the desired motion
consists of n different frames, this has the form:

M = argmin
1
n ∑

i
cost(M( fi))

s.t. g j(M( fi)) = 0 ∀ j, i

hk(M( fi))≤ 0 ∀k, i (1)

Typically cost(M( fi)) is taken to be the sum of the joint
torques or muscle forces exerted by the character at frame
fi and the constraint functions g j and hk enforce that the re-
sulting motion satisfy the laws of physics.

Although this formulation can work well for synthesizing
single motions, it does not provide any means by which user
commands can be incorporated. To this end, we first define
a vector of task parameters θ( fi) for each frame M( fi). The
definition of the task parameters is task specific, and pro-
vides the means by which the user can control the character.
For example, in a controller which allows the character to
be steered to walk in a desired direction, the task parame-
ters would simply include the character’s desired heading.
We then alter the objective function used by spacetime con-
straints to penalize deviations from performing the desired
task at each frame:

cost(M( fi),θ( fi)) = costb(M( fi))+ costt(M( fi),θ( fi))
(2)

Here costb(M( fi)) is the biomechanical cost inherent in the
character’s motion at frame M( fi), and costt(M( fi),θ( fi)) is
the task cost penalizing frames in which the character’s state
M( fi) is not in accordance with the task parameters θ( fi).
Details of the specific task parameters we use are given in
section 4.

Motion Graph Optimality In order to measure how effec-
tive a given motion graph will be as a locomotion controller,
the preceding definition of the optimality of single motions
must be generalized in two ways. Firstly it must allow for
a complex connectivity of multiple motions into a larger
graph, and secondly it must account for the fact that the
task parameters are not known in advance, but will rather be
dictated at runtime by a user. These requirements naturally
lead to a definition of optimality based on the formulation
of a controller as a Markov decision process (MDP). This

MDP consists of a state space defined by the set of tuples
s = ( f ,r,θ) where f is a frame in G, r is a matrix giving the
global 2D position of the character, and θ is some setting of
the problem’s task parameters.

Since a user controls a character by changing the task param-
eters as the character moves, we no longer restrict ourselves
to a fixed sequence of task parameters, but instead specify
a dynamical model by which they are expected to change
over time. This model specifies the expected behavior of the
user as they control the character. Although in principle this
task model could take any form, in our implementation we
only use Markovian models which only specify a probabil-
ity P [θ( ft+1)|M( ft),θ( ft)] of the user selecting task param-
eters θ( ft+1) for the next frame if the task parameters in the
current frame are θ( ft) and the character’s current state is
M( ft). Although this is a restricted model of a user’s ex-
pected behavior, we have found it to be sufficient for con-
troller synthesis, and it can also be easily learned from ex-
amples of real user behavior [MP07].

The more complex connectivity between the motions in a
graph is accounted for with a transition function. This func-
tion defines how the character can move from one point in
state space s = ( f ,r,θ) to another s′ = ( f ′,r′,θ′), done by
changing f to f ′, altering r by the transformation associated
with the edge in G between f and f ′, and stochastically up-
dating θ according to P

[
θ
′|M( f ),θ

]
. Finally, we define a

cost function giving the cost incurred by transitioning from s
to s′ by cost(s,s′) = cost(M( f ),θ). The goal of such a MDP
controller is to pick which edges in G to follow so as to min-
imize the cost of the corresponding state transitions, given
the current values of the task parameters.

Because we do not know the sequence of task parameters
a user will choose in advance, we cannot use the objective
function in equation 1 directly to evaluate the cost of using
a controller built from a particular graph. We therefore alter
it so that instead of being defined by the average per-frame
cost of a motion, it represents the expected value of the aver-
age per-frame cost incurred while using the controller. This
expected cost depends on the policy π which dictates which
edge the G should be followed from each possible combina-
tion of f and θ. Evaluating a policy at a point in state space
yields a new point in state space s′ = π(s). We make the
standard choice that this policy be required to be an optimal
policy π

∗ which minimizes the associated expected cost over
the space of all possible policies.

In order to numerically calculate the expected average per-
formance of a controller we use reinforcement learning
[SB98]. This is done with a two-step process: First we cal-
culate an optimal policy π

∗ which determines which edge
should be taken in the graph for each possible combina-
tion of node and task parameters. This can be efficiently
computed by calculating a value function over the com-
bined space of graph nodes and task parameters. Since
we formulate our controller as an MDP, there are a num-

c© 2013 The Author(s)
c© 2013 The Eurographics Association and Blackwell Publishing Ltd.
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ber of methods which can be automatically applied in or-
der to compute such a value function. Our implementation
uses fitted value iteration [Gor95], but we also refer the
reader to any of a number of character animation papers
[LL04, LK05, TLP07, MP07, LZ08] which employ alterna-
tive approaches to learning the value function.

Once the optimal policy π
∗ has been determined, we need

to compute an influence function which gives the probability
with which a character moving according to π

∗ will be found
in any particular state, taken in the limit as the controller
is run for an infinite amount of time. Intuitively, this influ-
ence function captures the notion that some motions may be
used more often than others, and thus costs for these motions
should likewise matter more. This approach has proven suc-
cessful in creating compact controllers from a database of
pre-captured motions [LLP09].

Rather than explicitly constructing an approximation to
the influence function, we generate a number of samples
s1, . . . ,sn of according to its distribution. We initially dis-
tribute s1, . . . ,sn evenly over the state space, and then re-
peatedly advect these points according to π

∗. This is done
by, at each point and iteration, using π

∗ to determine which
edge in G to follow and then following the MDPs transi-
tion function for this edge to arrive at a new point in state
space. After a sufficient number of iterations the state points
accurately sample from the influence function. We can then
calculate the expected value of the average per-frame cost of
using the controller with the given task model as:

cost(G) =
1
n ∑

si

cost(si,π
∗(si)) (3)

We note that when solving a spacetime constraints problem
to generate a motion these samples only alter the objective
function in equation 1, leaving the constraint functions un-
altered. This means that this sampling procedure does not
impact the physical validity of the generated motions.

So far we have only accounted for how the objective function
in equation 1 generalizes from motion synthesis to controller
synthesis. It is still necessary to address the constraint func-
tions. Fortunately the answer here is simple. Each motion M
of which G is comprised is a minimum solution to equation
1, and thus satisfies the constraint functions. It merely re-
mains to ensure that the constraint functions are also satisfied
at the junctions between motions. It is sufficient to simply re-
quire that when adding a new motion M to G, the first and
last pairs of frames in M each correspond to a pair of consec-
utive frames in G. This ensures that the motions seamlessly
stitch together and that all animations generated by a con-
troller using G will be physically valid.

3.2. Controller Generation

Equation 3 allows us to judge the merits of one motion graph
versus another, so it remains to actually construct a graph

which minimizes this cost. We construct such a graph in-
crementally starting from an initial graph G0 consisting of
a single walk cycle as generated by [WP09]. Each Gi+1 is
then created by generating a new motion Mi+1 and adding it
to Gi. At a high-level, this process uses the following steps:

1. Search over all candidate optimizations to generate Mi+1.
For each candidate:

a. Create M̃ as an efficient-to-compute approximation of
Mi+1. This is used in the next two steps.

b. Determine c, an estimate of cost(Gi+1) assuming the
optimization used to generate Mi+1 succeeds.

c. Determine p, an estimate of the probability that the
optimization used to generate Mi+1 will succeed.

d. Compute the expected cost of Gi+1 after attempting to
solve for Mi+1 as (1− p) · cost(Gi)+ p · c.

2. Perform a spacetime constraints optimization to solve for
the Mi+1 for which this expected cost is minimized. If the
optimization succeeds, add Mi+1 to Gi.

3. Repeat until termination

A more detailed pseudocode overview our algorithm is given
in figure 1.

There are several sub-problems which must be addressed in
this method.

• A method allowing a wide range of candidate Mi+1 mo-
tions suitable for augmenting Gi to be generated.

• A technique to generate M̃, which serves as an efficient-
to-compute guess at Mi+1.

• A way of quickly estimating c and p in the above outline.

• A an algorithm for searching over the space of possible
new motions to determine the single next motion to solve
in full and add to Gi.

These sub-problems will be addressed in turn.

Motion Optimization We generate each motion Mi by
starting with a ‘guess’ initialization motion M̃i and use this
as the initialization for a spacetime constraints optimization.
Taking M̃i for granted for the moment, we solve for Mi with
a spacetime constraints formulation is based on the method
of [WP09]. Since the approach of [WP09] can only generate
cyclic gaits, we extend it to support the creation of a wider
range of motions by exposing parameters of the optimization
and then searching for the values of these parameters which
are expected to generate the most useful new motion.

Each new motion Mi+1 is used to augment the graph Gi.
Although our algorithm’s structure supports any number of
ways of augmenting a graph, we use two methods for achiev-
ing this: Add a new motion providing a transition between
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1: G0← single walk cycle generated using [WP09]
2: while not done do
3: minCost←∞
4: S∗,σ∗← none,none
5: for all S j do . find next optimization to perform
6: search σk
7: M̃← initialization motion for S j,σk

8: G̃← Gi∪ M̃
9: p← P̃(G̃,σk)

10: c← (1− p) · cost(Gi)+ p · c̃ost(G̃,σk)

11: if c < minCost then
12: minCost← c
13: S∗,σ∗← S j,σk
14: end if
15: end search
16: end for
17: M̃i+1← initialization motion for S∗,σ∗

18: Mi+1← S∗(M̃i+1,σ
∗) . perform optimization

19: Gi+1← Gi∪Mi+1
20: end while

Figure 1: Pseudocode for our controller generation algo-
rithm. S and σ represent an optimization template and its as-
sociated parameters respectively. The variable p stores the
probability with which an optimization is expected to con-
verge to a physically realistic result, and c stores the ex-
pected value of the cost of the new graph created by per-
forming an optimization to create a motion augmenting Gi
(taking into account that this optimization will only succeed
with probability p).

two existing states, and create a new cyclic motion and con-
nect it to Gi. To represent each of these two possible mod-
ifications we define a pair of optimization templates, de-
noted S1,S2 (figure 2). Each optimization template further
exposes a space of parameters such that any setting of these
parameters for S j, denoted σ j, yields a concrete optimiza-
tion problem which may be solved to generate a new motion
M′ = S j(M̃,σ j).

Which parameters are exposed to be varied and which are
fixed depends on the nature of the controller being generated,
but we have found the following to be useful for creating our
locomotion controllers:

parameter symbol connecting cyclic
start node fa X X
end node fb X X
turn angle θ X
strafe angle φ X
speed s X
gait type g X

The parameters fa, fb determine where Mi+1 connects from
and to Gi, θ gives the angle by which the character should
turn during a transition motion, and φ, s, and g give the straf-
ing angle, speed, and gait type of the cycle portion of Mi+1.
Each such possible gait g is specified by a set C of con-

Figure 2: The two optimization templates we employ. The
transition template adds a transition between two existing
frames in G. The cyclic template creates a new cyclic motion
Mc, then creates a transition motion from G to Mc and from
Mc to G. Note that the first and last pair of frames in each
transition motion must match existing frames in G.

tact intervals ( f oot1,start1,end1), · · · ,( f ootn,startn,endn),
specifying that f oot j is in contact with the ground from time
start j to endi. We have found that specifying these contact
intervals is relatively easy and generally takes only a few
minutes. Further details on the formulation of the spacetime
constraints optimization are given in the appendix.

Motion Initialization Unfortunately, spacetime constraints
optimizations such as the ones we employ are notoriously
sensitive to their initialization, M̃i+1. Depending on the
quality of its initialization an optimization may converge to
a good result, converge to a poor local minimum (which is
physically valid but energetically inefficient), or fail to con-
verge to a physically valid motion at all. Since we do not
assume any example data from which a good initialization
might be formed this presents a difficulty. The key is noting
that Gi is constructed entirely of physically valid motions
seamlessly stitched together, and thus Gi in some sense rep-
resents a database of ‘good’ motions which we can use to
create M̃i+1.

Since there are in general many possible initialization mo-
tions that can be generated from Gi, we select the single mo-
tion which minimizes a a quality function q(M̃). The func-
tion associates each candidate motion with a real number
representing how good an initialization it provides. A qual-
ity of 0 means that the optimization is virtually guaranteed to
converge to a good result, while motions with large quality
measures are likely to be more problematic. We have found
that a simple choice for q works well – the sum of the dis-
tance between each frame in M̃ and the nearest frame in Gi:

q(M̃) = ∑
j

min
k

d(M̃( f j),Gi( fk)) (4)

Here d(M( fi),G( f j)) is defined according to the metric used
in [KGP02].

For each potential optimization, defined by an optimiza-
tion template S j and setting of its parameters σ j, we search
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through Gi to find a motion which best serves as an initial-
ization for an optimization with parameters in σ j. The end
result will be a motion which correctly satisfies the fa, fb, θ,
and g parameters in σ j , but which may not satisfy φ or s nor
be physically realistic until the final spacetime constraints
optimization is solved. This search for the best initialization
motion in G is performed slightly differently depending on
if we are creating a cyclic or a transition motion.

For cyclic motions we search over all cycles in Gi up to 1.5
seconds in length. Each such cycle defines a motion Mc, but
the timing of this motion may not match the that of the mo-
tion to be generated. This is the case when Si and σi specify a
set of foot contact intervals C which the resulting gait should
follow. We address this by first discarding any motions in
which a foot has a different number of contact intervals than
is specified by Si and σi. For each remaining motion, we
warp Mc so that its foot contact timings match those in C
using the approach described in appendix B. Finally, in the
case that Si has a parameter corresponding to the character’s
velocity, we alter the motion of the root of the character in
M̃i so that it achieves the desired velocity.

For transition motions we perform a similar operation. For a
transition motion starting at graph node fa and ending at fb,
we begin by searching over all pairs of paths in Gi, one start-
ing from fa (and ending anywhere) and the other ending at fb
(but starting anywhere). For each pair of paths we compute
a linear blend from the path starting at fa into the path end-
ing at fb, and choose the pair for which the result scores the
best according to equation 4. In the case that Si parameter-
izes over a turn angle θ, we circularly warp the resulting clip
so that it achieves the desired turn. We then calculate M̃i+1
by performing a more expensive but higher quality blend of
these two paths using a registration curve [KG03].

Graph Construction We create a controller incrementally
by augmenting a motion graph Gi with new motions gen-
erated from a spacetime constraints optimization. This re-
quires determining which motion to add at each iteration.
Since the goal is to arrive at a controller which minimizes
equation 3, in an ideal world we could search directly over
the parameter spaces for each optimization template for the
motion when when added to Gi gives the lowest value of
cost(Gi+1). Unfortunately correctly evaluating cost(Gi+1)
requires Mi+1 which involves solving a spacetime con-
straints optimization – an extremely expensive computation
and one which may often fail to converge to physically valid
solution at all. This makes it infeasible to use cost(Gi+1)
as the objective function for determining how Gi should be
augmented.

Since actually calculating cost(Gi+1) is expensive, we seek
to efficiently approximate it with a pair of surrogate func-
tions: c̃ost and P̃. The function c̃ost(Gi,σi+1) estimates
cost(Gi+1) under the assumption that the optimization
Si+1(M̃i+1,σi+1) is used to create Mi+1 and that this op-

timization succeeds. P̃(Gi,σi+1) gives an estimate of the
probability with which this optimization can be expected
to succeed. We then search for the optimization parameters
σ
∗
i+1 which maximize the expected value of the decrease in

the cost of Gi+1:

(1− p) · cost(Gi)+ p · c̃ost(Gi,σ
∗
i+1) (5)

where p = P̃(Gi,σ
∗
i+1). Then only solve a single space-

time constraints problem Si+1(M̃i+1,σ
∗
i+1) is solved to cre-

ate Mi+1 and thereby Gi+1.

We define c̃ost(Gi,σi+1) by simply using M̃i+1 as a stand-
in for Mi+1; creating G̃i+1 by adding M̃i+1 to Gi and defin-
ing c̃ost(Gi,σi+1) = cost(G̃i+1). This avoids performing a
spacetime constraints optimization, but has the caveat that it
still requires estimates for the biomechanical costs in equa-
tion 2 associated with each frame in M̃i+1. We do this by
interpolating the costs associated with each frame in Gi us-
ing:

costb(G̃i+1( fk))
∑ j costb(Gi( f j))d(G̃i+1( fk),Gi( f j))

−2

∑ j d(G̃i+1( fk),Gi( f j))−2

Where d(M( fi)′,M( f j)) is measured according to the met-
ric in [KGP02].

The definition of P̃(Gi,σi+1) is necessarily more ad hoc as
the probability that a given optimization will converge de-
pends in complicated ways on the specifics of the optimiza-
tion and the particular nonlinear optimizer used. Neverthe-
less, we expect that optimizations for which q(M̃i+1) ≈ 0
will be expected to succeed, as well optimizations for which
σi+1 is similar to an optimization which has previously suc-
ceeded. Similarly, optimizations for which σi+1 is similar to
those for a previously failed optimization will be likewise
expected to fail, although this probability can be reduced by
a new higher quality initialization. We believe that there are
many possible functions satisfying these properties which
would serve as a suitable definition for P̃(Gi,σi+1), but the
particular formulation use is given in appendix C.

Parameter Search Having defined c̃ost(Gi,σi+1) and
P̃(Gi,σi+1), it only remains to solve for the optimization
parameters σ

∗
i+1 which minimize equation 5. Although in

principle any optimization technique would suffice for this
task, we note that although c̃ost(Gi,σi+1) and P̃(Gi,σi+1)
are significantly cheaper to compute than actually perform-
ing a spacetime constraints optimization, they are still rela-
tively expensive (on the order of 0.2 to a few seconds). We
therefore choose an approach which attempts reduce how
many evaluations of these surrogate functions are required.

Because the the parameter spaces for each optimization tem-
plate are low-dimensional, we employ a method which uti-
lizes all previous evaluations of equation 5 for the current
Gi iteration. Specifically, given the previous evaluations of
equation 5 (σ1,cost1), . . . ,(σn,costn) such that cost j is the
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Figure 3: The skeletal structured for two different bipeds, a
triped, and a quadruped for which we synthesize controllers.

evaluation of equation 5 for the parameters σ j, we choose
the next parameters σn+1 to sample as those which minimize
∑ j

w j cost j
w j+1 where w j = d(σn+1,σ j)

−2. This equation has the
property that it is exactly equal to cost j when σn+1 = σ j,
and generally decreases elsewhere, leading to a global ex-
ploration of the optimization parameter space.

Once this search process converges, we have a set of op-
timization parameters σ

∗
i+1 which minimize equation 5, so

we can construct a graph by using σ
∗
i+1 to create Mi+1 and

thereby Gi+1, repeating the process until either a given size
of G is attained or when the decrease of cost(Gi+1) from
cost(Gi) falls below some threshold. Pseudocode for this
process appears in lines 4-15 of figure 1. The final motion
graph resulting from this optimization defines a controller
which can animate the input animal efficiently performing
the given tasks.

4. Results

We demonstrate the effectiveness of our automatic controller
generation on several different animals with widely vary-
ing morphologies: Two different simplified bipedal creatures
both with 16 DOFs and weighing 10.6kg, a 65kg triped with
a large back leg and two smaller front legs with 22 DOFs,
and a 500kg horse-like quadruped with 29 DOFs. The skele-
tal structures for these animals are illustrated in figure 3.

The task models used to define the input to these controllers
consist of both single- and multi-objective tasks. Each of
these task models is created by combining one or multi-
ple of four different sub-tasks: a direction following task, a
torso angle matching task, a speed matching task, and a gait
matching task, each parameterized by a single variable and
with an associated cost function. The total task cost func-
tion for equation 2 is simply the sum of the individual cost
functions:

Figure 4: Frames of a triped direction and gait type con-
troller in use.

task task parameter cost
direction following θv |θv− atan( vy

vx
)|

torso orientation θr |θr−φ|
speed st |st −‖v‖|
gait type gt 10 · (1−δgt ,g)

Figure 4 shows some frames from a triped controller con-
structed for a task model parameterizing over both direction
and gait type.

We demonstrate our controller on four different task combi-
nations. In all cases the synthesized controller successfully
performs the desired tasks without need for any manual per-
task or animal tweaking:

demo task parameters optimization parameters
direction θv θ

direction + torso θv, θr θ, φ

direction + gait θv, gt θ, g, fa, fb
speed st s, fa, fb

The learning times observed for our controllers range from
5-10 minutes for a biped direction controller to 8-10 hours
for a horse torso angle plus direction controller. Most of this
difference in running time is due the the speed of the space-
time constraints solver when applied to these different ani-
mals, with the rest due to the fact that multi-task controllers
generally require more motion clips. Successful controllers
tend to require between 5-10 constituent motions for the
single-parameter controllers to 15-30 clips for more com-
plicated controllers.

We evaluate the effectiveness of our process for iteratively
constructing G by comparing it against a technique which at-
tempts to sample the parameter space of each Si as uniformly
as possible. A graph of cost(Gi) at each iteration for our ap-
proach versus uniform sampling for three different task de-
scriptions is shown in figure 5. For the two parameter task
models, our approach achieves a better cost after its first few
iterations than was achieved by uniform sampling even af-
ter over 20 iterations. The improvement for single parameter
tasks is less dramatic since the state space is small enough to
be sampled simply. Nevertheless the relative improvement of
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Figure 5: Solid lines plot cost(Gi) over 20 iterations of our
algorithm for three different task models. For comparison
the costs achieved by a uniform sampling approach for the
same tasks are shown as dashed lines. Each iteration repre-
sents the selection and application of a single optimization
template (see figure 2).

our approach is still substantial – after 20 iterations achiev-
ing a cost over five times lower than by uniform sampling.

For each controller we also define the dynamics of how
the task parameters change over time. Our implementation
does this independently for each task parameter by randomly
choosing between keeping the parameter unaltered, switch-
ing it randomly to a new value, or changing it to a value ran-
domly selected from a Gaussian distribution centered at the
parameter’s current value. Changing the relative probability
with which these options occur impacts the type of controller
created. For instance, controllers generated under large and
frequent changes to the task parameters focus on motions
which allow the character to quickly change its state, while
controllers which assume that the task parameters stay pri-
marily constant excel at making sure that the character can
eventually satisfy the task accurately.

Additionally, setting the weights given to biomechanical ver-
sus task costs (see equation 6) provides a simple and useful
way to alter the nature of the generated controllers. Con-
trollers with a low weight on biomechanical costs are more
agile, but may appear realistic, while controllers emphasiz-
ing the biomechanical costs are more smooth and natural
looking, but adapt more slowly to changes in the task pa-
rameters. We have found a that a wide range of weights give
reasonable results, and typically weight the biomechanical
costs with a factor between 1 and 0.1, where a factor of 1
gives a weight equal to that of the task costs.

5. Conclusion and Future Work

We have described a completely automatic method for build-
ing animal locomotion controllers. The only input needed is
a skeletal description of the animal, a set of timings for the
gaits it can perform, and a statistical model of how the user
is expected to control it. The tasks may be single- or multi-
valued and the technique works for a wide range of different
animal forms.

As is the case with almost all methods which control a char-
acter using a Markov decision process, our method scales
poorly with the number of task parameters used simultane-
ously. This is both because solving for c̃ost is more expen-
sive, and because larger motion graphs are usually required
to perform well in such cases. This limits the applicability
of our approach to problems with two or perhaps three task
parameters. Another limitation on our approach is its funda-
mental reliance on a powerful trajectory optimizer. Although
our spacetime constraints implementation performs reason-
ably well, it has trouble synthesizing motions for animals
with more than 30-40 DOFs, particularly where said animal
is executing a higher speed run or jog. The spacetime con-
straints solver we employ also cannot synthesize motions for
non-legged animals (such as snakes) or for animals with a
large number of degrees of freedom (such as centipedes),
nor for animals with distinct heel and toe contacts such as
humans, although these present interesting challenges for fu-
ture work.

Although there are several parameters that can be adjusted to
tweak the style of the motions in the controllers we generate,
our approach does not currently support artist interaction.
One way to address this would be to incorporate a degree of
artist control into the spacetime constraints solver. Although
there has been some recent promising work in this direction
[NCNV∗12], it remains an open question how employ artist
interaction within the context of our motion graph synthesis
without requiring artist intervention at every time another
spacetime constraints problem needs to be solved.

Appendix A: Spacetime Constraints Solver

The spacetime constraints solver used to generate the indi-
vidual motions in our controllers is based on the formula-
tion described in [WP09]. When generating cyclic motions,
the constraint functions and the biomechanical component
of the cost in equation 2 may be used directly from their
description. For motions intended to connect states within
an existing motion graph, we must ensure that the generated
motion transitions seamlessly from its start and end states
in the graph. To achieve this it is sufficient to ensure that
the first and last pairs of frames each match a pair of con-
secutive states in the graph. We therefore fix the optimiza-
tion variables corresponding to the first two and the last two
frames and only optimize over the variables associated with
the interior frames.

It remains to combine the biomechanical and task costs into
the objective function as in equation 2. To do this first attach
the initialization motion M̃ to the current graph G. We gen-
erate a set of samples in the state space of the controller’s
MDP distributed according to the controllers influence func-
tion using the method described at the end of section 3.1,
and retain the m samples which lie at frames in M̃. We can
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then calculate the objective function as:

1
n ∑

fi

α log(costb(M( fi)))+
1
m ∑

s j=( fi,r j ,θ j)

costt(s j,π
∗(s j))


(6)

This is equivalent to computing equation 3 just along the
motion being optimized. Here costb(M( fi) is the objective
function as described by [WP09] and α is a weighting term
setting the tradeoff between minimizing biomechanical ver-
sus task costs. We typically employ values of α from 0.1 to
1. The logarithmic scaling of the biomechanical cost is used
to make it easier to define the task costs. For instance a gal-
lop may require significantly more energy than a slow walk,
but that should not outright prevent the optimization from
ever using such motions.

Appendix B: Cyclic Motion Temporal Alignemt

Given a motion Mc with foot contact times Cc, and tar-
get foot contact times C, we calculate a temporal alignment
between Cc and C independently for each foot by pairing
off the contact intervals for that foot in order. We then de-
fine a per-foot time warp function tc = Tf oot j (t) such that
Tf oot j (start j) = startc, j and Tf oot j (end j) = endc, j for each
f oot j,start j,end j in C and f oot j,startc, j,endc, j in Cc which
match the given foot. Times in between the interval end-
points are linearly interpolated. Since Tf oot j perfectly aligns
the contact timings of f oot j, we create an initialization mo-
tion M̃i by blending between these different warps according
to

M̃i(t)d =
∑ f oot j

w( f oot j,d)Mc(Tf oot j )d

∑ f oot j
w( f oot j,d)

where d ranges over the DOFs for the character and
w( f oot j,d) is 1 if DOF d is on a path from f oot j to the root
and 0.01 otherwise. This ensures that the contact timings of
each foot in M̃i match those in Ci and that the other degrees
of freedom are reasonably interpolated.

Appendix C: Estimating Optimization Success Probability

Our definition of the function P̃(Gi,σi+1) estimates the
probability with which the optimization defined by σi+1 and
initialization quality q = q(M̃i) will successfully converge
to a physically valid motion. The motions constituting Gi
are created in a series of previous optimizations, some of
which have succeeded and others which have failed. Let the
parameters and initialization quality be denoted by σs, j and
qs, j for the successful optimizations, and σ f , j and q f , j for
the failed optimizations. Then we define:

P̃(Gi,σi+1) =
s1 + s2

s1 + s2 + f1 + f2
(7)

where

s1 = ∑
qs, j<q

qs, j

q
d(σs, j,σi+1)

−2 (8)

s2 = ∑
qs, j>q

1
d(σs, j,σi+1)2 + log( q

qs, j
)

(9)

f1 = ∑
q f , j>q

q
q f , j

d(σ f , j,σi+1)
−2 (10)

f2 = ∑
q f , j<q

1
d(σ f , j,σi+1)2 + log( q f , j

q )
(11)

and the function d(σa,σb) computes the distance between
the optimization parameters σa and σb as the square root of
a sum per-parameter similarity measures as given below:

parameter distance
fa d(Gi( f1),Gi( f2))

2

fb d(Gi( f1),Gi( f2))
2

θ 2−2cos(θ2−θ1)
φ 2−2cos(φ2−φ1)

s (s2− s1)
2

g 1−δg1,g2

where d(Gi( f1),Gi( f2))
2 is measured according to the met-

ric in [KGP02], and δg1,g2 is 1 when g1 and g2 repre-
sent identical foot contact timings and 0 otherwise. An un-
weighted sum of these terms has sufficed in our experiments.
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