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Figure 1 Sample input images we animate using our technique. The first two pictures are photographs of a Japanese Temple (a) and a harbor (b). The paintings
shown in (c) and (d) are Claude Monet’s Le bateau atelier (The Boat Studio) and The Bridge at Argenteuil. We also try our method on Van Gogh’s Sunflower (e) to
animate the flowers.

Abstract
In this paper, we explore the problem of taking a still picture and
making it move in convincing ways. In this paper, we limit our do-
main to scenes containing passive elements that respond to natural
forces in some oscillatory fashion. We use a semi-automatic ap-
proach, in which a human user segments the scene into a series
of layers to be individually animated. The automatic part of the
approach works by synthesizing a “stochastic motion texture” us-
ing a spectral method — i.e., a filtered noise spectrum whose in-
verse Fourier transform is the motion texture. The motion texture
is a time-varying 2D displacement map, which is applied to each
layer. The resulting warped layers are recomposited, along with “in-
painting” to fill any holes, to form the animated frames. The result
is a video texture created from a single still image, which has the
advantages of being more controllable and of generally higher im-
age quality and resolution than a video texture created from a video
source. We demonstrate the technique on a variety of photographs
and paintings.

1 Introduction
When we view a photograph or painting, we perceive much more
than the static picture before us. We supplement that image with our
life experiences: given a picture of a tree, we imagine it swaying;
given a picture of a pond, we imagine it rippling. In effect, we bring
to bear a strong set of “priors” (to use the technical jargon from
computer vision), and these priors enrich our perceptions.
In this paper, we explore how a set of explicitly encoded priors
might be used to animate pictures on a computer. The fully auto-
matic animation of arbitrary scenes is, of course, a monumental
challenge. In order to make progress, we make the problem eas-
ier in two ways. First, we use a semi-automatic, user-assisted, ap-
proach. In particular, we have a user segment the scene into a set of
animatable layers and assign certain parameters to each one. Sec-
ond, we limit our scope to scenes containing passive elements that
respond to natural forces in some oscillatory fashion. The types of
passive elements we explore include plants and trees, water, float-
ing objects like boats, and clouds. The motion of these objects is
driven by the same natural force, namely, wind. While these may
seem like a limited set of objects and motions, they occur in a large
variety of pictures and paintings, as shown in Figure 1.
It turns out that all of these elements can be animated in a simi-
lar way. First, we segment the picture into a set of user-specified

layers using Bayesian matting [Chuang et al. 2001]. As each layer
is removed from the picture, “in-painting” is used to fill in the re-
sulting hole. Next, for each layer, we synthesize a stochastic motion
texture using spectral methods [Stam 1995]. Spectral methods work
by generating a noise spectrum in the frequency domain; applying a
(physically based) spectrum filter to that noise, which is specific to
the type of natural force and to the type and parameters of the pas-
sive object being affected; and computing an inverse Fourier trans-
form to create the stochastic motion texture. This motion texture is
a time-varying 2D displacement map, which is applied to the pixels
in the layer. Finally, the warped layers are recomposited to form the
animated picture for each frame.
The resulting moving picture can be thought of as a kind of video
texture [Schödl et al. 2000]—although, in this case, a video texture
created from a single static image rather than from a video source.
Thus, these results have potential application wherever video tex-
tures do, i.e., in place of still images on Web sites, as screen savers
or desktop “wallpapers”, or in presentations and vacation slide
shows. In addition, there are several advantages to creating video
textures from a static image rather than from a video source.
First, because they are created synthetically, they allow greater cre-
ative control in their appearance. For example, the wind direction
and amplitude can be tuned for a particular desired effect. Second,
consumer-grade digital still cameras generally provide much higher
image quality and greater resolution than their videocamera coun-
terparts. This set of advantages may allow video textures to be used
in entirely new situations that were not previously practical. For ex-
ample, controllable, high-resolution video textures might be usable
for animated matte paintings in special effects.
For the most part, the algorithms we describe in this paper are fairly
simple applications of already available techniques. Thus, perhaps
the paper’s greatest contributions are its formulation of the overall
problem, its introduction of the concept of stochastic motion tex-
tures, and its proof of the feasibility of applying a warping-based
approach to creating surprisingly convincing and appealing ani-
mated pictures.

1.1 Related work
Our goal is to synthesize a stochastic video from a single image.
Hence, our work is directly related to the work on video textures and
dynamic textures [Szummer and Picard 1996; Schödl et al. 2000;
Wei and Levoy 2000; Soatto et al. 2001; Wang and Zhu 2003]. Like
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our work, video textures focus on “quasi-periodic” scenes. How-
ever, the inputs to video texture algorithms are short videos that can
be analyzed to mimic the appearance and dynamics of the scene. In
contrast, the input to our work is only a single image.
Our work is, in spirit, similar to the “Tour Into the Picture” sys-
tem developed by Horry et al. [1997]. Their system allows users
to map a 2D image onto a simple 3D box scene based on some
interactively selected perspective viewing parameters such as van-
ishing points. This allows users to interactively navigate into a pic-
ture. Criminisi et al. [2000] propose an automated technique that
can produce similar effects in a geometrically correct way. More
recently, Oh et al. [2001] developed an image-based depth editing
system capable of augmenting a photograph with a more compli-
cated depth field to synthesize more realistic effects. In our work,
instead of synthesizing a depth field to change the viewpoint, we
add motion fields to make the scene change over time.
For certain classes of motions, our system requires the users to spec-
ify a skeleton for a layer. It then performs a physically-based sim-
ulation on the skeleton to synthesize a motion field; it is therefore
similar to skeleton-based animation approaches. Litwinowicz and
Williams [1994] use keyframe line drawings to deform images to
create 2D animations. Their system is quite useful for traditional
2D animation. However, their technique is not suitable for mod-
eling the natural phenomena we target because such motions are
difficult to keyframe. Also, they use a smooth scattered data inter-
polation to synthesize motion field without any physical dynamics
model.
Our work also has similar components to the object-based image
editing system proposed by Barrett and Cheney [2002], namely,
object selection, matte extraction, and hole filling. Indeed, Barrett
et al. have also demonstrated how to generate a video from a single
image by editing and interpolating keyframes. Like Litwinowicz’s
system, the focus is on key-framed rather than stochastic (temporal
texture-like) motions.
An earlier attempt to create the illusion of motion from an im-
age was the “Motion without movement” paper by Freeman
et al. [1991]. They apply quadrature pairs of oriented filters to vary
the local phase in an image to give the illusion of motion. While the
motion is quite compelling, the band-pass filtered images do not
look photorealistic.
Even earlier, at the turn of the (20th) century, people painted out-
door scenes on pieces of masked vellum paper and used series of
sequentially timed lights to create the illusion of descending water-
falls [Hathaway et al. 2003]. People still make this kind of device,
which is often called a kinetic waterfall. Another example of a sim-
ple animated picture is the popular Java program Lake applet, which
takes a single image and perturbs the image with a set of simple rip-
ples [Griffiths 1997]. Though visually pleasing, these results often
do not look realistic because of their lack of physical properties.
Working on an inverse problem to ours, Sun et al. [2003] propose
a video-input driven animation (VIDA) system to extract physical
parameters, like wind speed, from real video footage. They then use
these parameters to drive the physical simulations of synthetic ob-
jects to integrate them consistently with the source imagery. They
estimate physical parameters from observed displacements; we syn-
thesize displacements using a physical simulation based on user-
specified parameters. They target a similar set of natural phenom-
ena to those we study, such as plants, waves, and boats, which can
all be explained as harmonic oscillations.
To simulate our dynamics, we use physically-based simulation
techniques previously developed in computer graphics for modeling
natural phenemena. For waves, we use the Fourier wave model to
synthesize a time-varying height field. Mastin et al. [1987] were the
first to introduce statistical frequency-domain wave models from
oceanography into computer graphics. In a similar way, we synthe-

size stochastic wind fields [Shinya and Fournier 1992; Stam and
Fiume 1993] by applying a different spectrum filter. When apply-
ing the wind field to trees, since the force is oscillatory in nature,
the responding motions are also periodic and can be solved more ro-
bustly and efficiently in the frequency domain [Stam 1997; Shinya
et al. 1998].

Aoki et al. [1999] coupled physically-based animations of plants
with image morphing techniques as an efficient alternative to the ex-
pensive physically-based plant simulation and synthesis and there-
fore only demonstrate their concept on synthetic images. In our
work, we target real pictures and use our approach as a way to syn-
thesize video textures for stochastic scenes.

Our system requires users to segment an image into layers. To sup-
port seamless composites, a soft alpha matte for each layer is re-
quired. We use recently proposed interactive image matting algo-
rithms to extract alpha mattes from the input image [Ruzon and
Tomasi 2000; Chuang et al. 2001]. To fill in holes left behind af-
ter removing each layer, we use an inpainting algorithm [Bertalmio
et al. 2000; Criminisi et al. 2003; Jia and Tang 2003; Drori et al.
2003].

1.2 Overview
We begin with a system overview that describes the basic flow
of our system (Section 2). We then address our most important
subproblem, namely synthesizing stochastic motion texture (Sec-
tion 3). Finally, we discuss our results (Section 4) and end with
conclusions and ideas for future work.

2 System overview
Given a single image I , how can we generate a continuously mov-
ing animation? The approach we follow is to break the image up
into several layers and to then synthesize a motion texture1 and ap-
ply it to each layer individually.

A motion texture is essentially a time-varying displacement map
defined by a motion type, a set of motion parameters, and optionally
a motion skeleton. A displacement map D is a set of displacement
vectors,

D(p) = (dx(p), dy(p)) (1)

for pixels p = (x, y). A motion texture M(t) is a mapping from a
time t to a displacement map D.

Applying a displacement field D directly to an image I results in a
forward warped image I ′ such that

I ′(x + dx(p), y + dy(p)) = I(x, y). (2)

However, since forward mapping is fraught with problems such as
aliasing and holes, we actually use inverse warping, I ′ = D′ ? I ,
where

I ′(x, y) = I(x + d′

x(p), y + d′

y(p)). (3)

We could compute the inverse displacement map D′ from D using
the two-pass method suggested in [Shade et al. 1998]. Instead, since
our motion fields are all very smooth, we simply dilate them by the
extent of the largest possible motion and reverse their sign.

With this notation in place, we can now describe the basic workflow
of our system (Figure 2), which consists of three steps: layering and
matting, motion specification and editing, and finally rendering.

1We use the terms motion texture and stochastic motion texture inter-
changeably in the paper. The term motion texture was also used in [Li et al.
2002] to refer a linear dynamic system learned from motion capture data.
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Figure 2 Overview of our system. The input still image (a) is manually segmented into several layers (b). Each layer Li is then animated with a different stochastic
motion texture M(t) (c). Finally, the animated layers Li(t) (d) are composited back together to produce the final animation I(t) (e).

Layering and matting. The first step, layering, is to segment
the input image I into layers so that, within each layer, the same
motion texture can be applied. For example, for the painting in Fig-
ure 2(a), we have the following layers: water, sky, bridge and shore,
three boats, and the eleven trees in the background (Figure 2(b)). To
accomplish this, we use an interactive object selection tool such as
a painting tool or intelligent scissors [Mortensen and Barrett 1995].
The tool is used to specify a trimap for a layer; we then apply
Bayesian matting to extract the color image and a soft alpha matte
for that layer [Chuang et al. 2001].
Because some layers will be moving, occluded parts of the back-
ground might become visible. Hence, after extracting a layer, we
use an inpainting algorithm to fill the hole in the background be-
hind the foreground layer. We use the example-based inpainting al-
gorithm of [Criminisi et al. 2003] because of its simplicity and its
capacity to handle both linear structures and textured regions. Note
that the inpainting algorithm does not have to be perfect, since only
pixels near the boundary of the hole are likely to become visible.
However, sometimes, we do have to perform manual inpainting to
better maintain layers’ structures, for example, the boats in Fig-
ure 2. After the background image has been inpainted, we work on
this image to extract the next layer. We repeat this process from the
closest layer to the furthest layer to generate the desired number of
layers. Each layer Li contains a color image Ci, a matte αi, and a
depth di. The depth could be automatically assigned with the order
in which the layers are extracted.

Motion specification and editing. The second component of
our system lets us specify and edit the motion texture for each layer.
Currently, we provide the following motion types: trees (swaying),
water (rippling), boat (bobbing), clouds (translation), and stone (no
motion :-). For each motion type, the user can tune the motion pa-
rameters and specify a motion skeleton, where applicable. We de-
scribe the motion parameters and skeletons in more details for each
motion type in Section 3.
Since all of the motions we currently support are driven by wind, the
user controls a single wind speed and direction, which is shared by
all the layers. This allows all the layers to respond to the wind con-
sistently. Our motion synthesis algorithm is fast enough to animate
a single layer in real-time. Hence, the system can provide instant
visual feedback to changes in motion parameters, which makes mo-
tion editing easier. Each layer Li has its own motion texture, Mi,
as shown in Figure 2(c).

Rendering. During the rendering process, for each time in-
stance t and layer Li, a displacement map Mi(t) is synthesized.

This displacement map is then applied to Ci and αi to obtain
Li(t) = Mi(t) ? Li(0) (Figure 2(d)). Notice that the displacement
is evaluated as an absolute displacement of the input image I(0)
rather than a relative displacement of the previous image I(t − 1).
In this way, repeated resampling is avoided.
Finally, all the warped layers are composited together from back to
front to synthesize the frame at time t, I(t) = L1(t)�L2(t)�. . .�
Ll(t), where d1 ≥ d2 · · · ≥ dl and � is the standard over opera-
tor [Porter and Duff 1984] (Figure 2(e)). The user can also specify
a time-varying wind field to create a more realistic animation.

3 Stochastic motion textures
In this section, we describe our approach to synthesizing the
stochastic motion textures that drive the animated image. In Sec-
tion 3.1, we describe the basic principles (spectral methods). We
then describe the details of each motion type, i.e., trees (Section
3.2), water (Section 3.3), bobbing boats (Section 3.4), and clouds
(Section 3.5).

3.1 Stochastic modeling of natural phenomena
Many natural motions can be seen as harmonic oscillations [Sun
et al. 2003], and, indeed, hand-crafted superpositions of handfuls of
sinusoids have often been used to approximate many natural phe-
nomena for computer graphics. However, this simple approach has
some limitations. First of all, it is tedious to tune the parameters
to produce the desired effects. Second, it is harder to hook all the
motions in a consistent way since they lack a physical basis. Lastly,
the resulting motions do not look natural since they are strictly peri-
odic — irregularity actually plays a central role in modeling natural
phenomena.
One way to add randomness is to introduce a noise field. Intro-
ducing this noise directly into the temporal or spatial domain often
leads to erratic and unrealistic simulations of natural phenomena.
Instead, we simulate noise in the frequency domain, and then sculpt
the spectral characteristics to match the behaviors of real systems
that have intrinsic periodicities and frequency responses. Specific
spectrum filters need to be applied to model specific phenomena,
leading to so-called spectral methods.
The spectral method for synthesizing a stochastic field in general
has three steps: (1) generate a complex Gaussian random field in
the frequency domain, (2) apply a domain-specific spectrum filter,
(3) compute the inverse Fourier transform to synthesize a stochas-
tic field in the time or frequency domain. A nice property of this
method is that the synthesized stochastic field can be tiled seam-
lessly. Hence, we only need to synthesize a patch of reasonable size
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and tile it to produce a much larger stochastic signal. This tiling ap-
proach works reasonably well if the size of the patch is large enough
to avoid objectionable repetition.
To realistically model natural phenomena, the filter should be
learned from the real-world data. For the phenomena we simulate,
plants and waves, such experimental data and statistics are avail-
able from other fields, e.g., structural engineering and oceanogra-
phy, and have already been used by the graphics community to cre-
ate synthetic imagery [Shinya and Fournier 1992; Stam and Fiume
1993; Mastin et al. 1987]. We use these methods to synthesize our
stochastic motion textures in the following sections.

3.2 Plants and trees
The branches and trunks of trees and plants can be modeled as phys-
ical systems with mass, damping, and stiffness properties. The driv-
ing function that causes branches to sway is typically wind. Our
goal is to model the spectral filtering due to the dynamics of the
branches applied to the spectrum of the driving wind force.
To model the physics of branches, we take a simplified view intro-
duced by [Sun et al. 2003]. In particular, each branch is represented
as a 2D line segment parameterized by u, which ranges from 0 to
1. This line segment is drawn by the user for each layer. Displace-
ments of the tip of the branch dtip(t) are taken to be perpendicular
to the line segment. Modal analysis indicates that the displacement
perpendicular to the line for other points along the branch can be
simplified to the form:

d(u, t) =
[

1

3
u4 − 4

3
u3 + 2u2

]

dtip(t) (4)

We approximate the (scalar) displacement of the tip in the direction
of the projected wind force as a dampled harmonic oscillator:

¨dtip(t) + γ ˙dtip(t) + 4π2f2
o dtip(t) = r(t)/m (5)

where m is the mass of the branch, fo = k/m is the natural fre-
quency of the system, γ = c/m is the velocity damping term [Sun
et al. 2003]. These parameters have a more intuitive meaning than
the damping (c) and stiffness (k) terms found in more traditional
formulations. The driving force r(t) is derived from the wind force
incident on the branch, as detailed below.
Taking the temporal Fourier transform of this equation gives us:

Dtip(f) =
R(f) exp−i2πθ

2πm
[

(f2 − f2
o )2 + γ2f2

]

−1/2
(6)

where R(f) is the Fourier transform of the driving force. The phase
shift θ is given by:

tan θ =
γf

f2 − f2
o

(7)

We can see from equation 6 that the dynamical system is acting as
a non-zero phase spectral filter on the forcing spectrum R(f).
Next, we model the forcing spectrum for wind. Experimental evi-
dence [Simiu and Scanlan 1986, p. 55] indicates that the temporal
velocity spectrum of wind at a point takes the following form:

V (f) ∼ vmean

(1 + κf/vmean)5/3
(8)

where vmean is the mean wind speed and κ is generally a function
of altitude which we take to be a constant. We therefore modulate
a random Gaussian noise field G(f) with the velocity spectrum to
compute the spectrum of a particular (random) wind velocity field:

Ṽ (f) = V (f)G(f) (9)

The force due to the wind is generally modeled as a drag force
proportional to ṽ2(t). However, in our experiments, we have found
that making the wind force directly proportional to wind velocity
produces more pleasing results.
Finally, we assemble equations 6-9 to construct the spectrum of
the tip displacement Dtip(f), take the inverse Fourier transform to
generate the tip displacement, dtip(t), and distribute the displace-
ment over the branch according to equation 4. The displacement of
points in the layer away from the skeleton is obtained by project-
ing all pixels orthogonally onto the original skeleton and using the
corresponding displacement.
The user can control the resulting motion appearance by indepen-
dently changing the mean wind speed vmean and the natural (oscil-
latory) frequency fo, mass m, and velocity damping term γ of each
branch.

3.3 Water
Water surfaces belong to another class of natural phenomena that
exhibit oscillatory responses to natural forces like wind. In this sec-
tion we describe how one can specify a water plane in a photograph
and then define the mapping of water height out of that plane to
displacements in image space. We then describe how to synthesize
water height variations, again using a spectral method.
The motion skeleton for water is simply a plane; we assume that
the image plane is the x-y plane and the water surface is parallel to
the x-z plane. To correctly model the perspective effect, the users
roughly specifies where the plane is. This perspective transforma-
tion T can be fully specified by the focal length and the tilt of the
camera, which can be visualized by drawing the horizon [Criminisi
et al. 2000].
After specifying the water plane, the water is animated using a time-
varying height field h(q, t), where q = (xq, y0, zq) is a point on the
water plane. To convert the height field h to the displacement map
Mt(p), for each pixel p we first find its corresponding point, q =
(xq, y0, zq) = Tp, on the water plane. We then add the synthesized
height h(q, t) as a vertical displacement, which gives us a point,
q′ = (xq, y0 + h(q, t), zq). We then project q′ back to the image
plane to get p′ = T−1q′. The displacement vector for Mt(p) =
p′ − p is therefore:

Mt(p) = T−1[Tp + (0, h(Tp, t), 0)] − p (10)

The above model is technically correct if we want to displace ob-
jects on the surface of the water. In reality, the shimmer in the water
is caused by local changes in surface normals. Therefore, a more
physically realistic approach would be to use normal mapping, i.e.,
to convert the surface normals computed from the spatial gradi-
ents of h(q, t) into two-dimensional displacements. We have found
that our current approach produces pleasing, realistic-looking re-
sults and plan to study the more physically-motivated reflections
model in the future.
To synthesize a time-varying height field for the water, we use the
time-varying wind velocity derived in the previous section to syn-
thesize a height field matching the statistics of real waves, as de-
scribed by Mastin et al. [1987].
The spectrum filter we use for waves is the Phillips spec-
trum [Tessendorf 2001], which is a power spectrum describing the
expected square amplitude of waves across all spatial frequencies,
s:

P (s) ∼
exp

[

−1/ (sL)2
]

s4
|ŝ · v̂mean|2 (11)

where s = |s|, L = v2
mean/g, g is the gravitational constant and

ŝ and v̂mean are normalized spatial frequency and wind direction
vectors.
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The square root of the power spectrum describes the amplitude of
wave heights, which we can use to filter a random Gaussian noise
field:

H0(s) = a
√

P (s)G(s) (12)

where a is a constant of proportionality and H0 is an instance of the
height field which we can now animate by introducing time-varying
phase. However, waves of different spatial frequencies move at dif-
ferent speeds. The relationship between the spatial frequency and
the phase velocity is described by the well-known dispersion rela-
tion,

w(s) =
√

gs. (13)

The time varying height spectrum can thus be expressed as:

H(s, t) = H0(s) exp [iw(s)t] + H∗

0 (−s) exp{−iw(s)t} (14)

where the H∗

0 is the complex conjugate of H0. We can now com-
pute the height field at time, h(q, t) as the two-dimensional inverse
Fourier transform of H(s, t) with respect to spatial frequencies s.
We take the generated height field and tile the water surface using
a scale parameter, β, to control the spatial frequency.
There are thus several motion parameters related to water: wind
speed, wind direction, the size of the tile N , the amplitude scale
a, and the spatial frequency scale β. The wind speed and direction
are controlled globally for the whole animation. We find that a tile
of size N = 256 usually produces nice looking results. Users can
change a to scale the height of the waves/ripples. Finally, scaling
the frequencies by β changes the scale at which the wave simulation
is being done. Simulating at a larger frequency scale gives a rougher
look, while a smaller scale gives a smoother look. Hence, we call β
the roughness in our user interface.

3.4 Boats
We approximate the motion of a bobbing boat by an 2D rigid trans-
formation composed of a translation for heaving and a rotation for
rolling. A boat moving on the surface of open water is almost al-
ways in oscillatory motion [Sun et al. 2003]. Hence, the simplest
model is to assign a sinusoidal translation and a sinusoidal rotation.
However, this often looks fake. In principle, we could build a sim-
ple model for the boat, convert the height field of water into a force
interacting with the hull and solve the dynamics equation for the
boat to estimate its displacement. However, since our goal is only
to synthesize an approximate solution, we directly use the height
field of the wave to move the boat, as follows.
We let the user select a line close to the bottom of the boat. Then, we
sample several points along the line. For each point qi, we look up
the corresponding 2D projection of the height field h(qi, t). Finally,
we use linear regression to fit a line through the qi’s. The position
and orientation of the fitted line then determine the heaving and
rolling of the boat.

3.5 Clouds
Another common element for scenic pictures is clouds. In principle,
clouds could also be modeled as a stochastic process. However, we
need the stochastic process to match the clouds in the image at some
point, which is harder. Since clouds often move very slowly and
their motion does not attract too much attention, we simply assign a
translational motion field to them. As with water, we have to extend
the clouds outside the image frame in some way, since their motion
in one direction will create holes that we have to fill.

4 Results
We have developed an interactive system that supports mat-
ting, inpainting, motion editing, and previewing the results.

We have applied our system to several photographs and fa-
mous paintings. The final results are best viewed in video form
(http://grail.cs.washington.edu/projects/StochasticMotionTextures).
Here, we summarize some of the results and discuss some details
in creating them.
It takes from several minutes to several hours to animate a picture
depending on the complexity of the input. Matting and inpainting is
the most time-consuming part in our system and usually consumes
more than 90 percent of the overall time for animating a picture. For
example, for the picture in Figure 1(a), because of the complicated
structure, it is difficult to specify the trimap for the branches on the
left. Since the background is smooth in color, we end up using a
garbage matte to take out the tree and use inpainting algorithm first
to estimate the background. Taking advantage of the known back-
ground, the trimap can be painted fairly roughly. We model a total
of 10 branches on the left and the right. We use a small wave ampli-
tude and high roughness to give the ripples a fine-grained look. For
the harbor picture in Figure 1(b), we animate the water and have
nine boats swing with the water. The cloud and sky are animated
using a translational motion field.
Figure 1(c)-(e) shows three paintings we have animated. Our tech-
nique actually works even better with paintings, perhaps because in
this situation we are less sensitive to anything that does not look per-
fectly realistic. For Claude Monet’s painting in Figure 1(c), we ani-
mate the water with lower amplitude roughness to keep the strokes
intact. We also let the boat sway with the water. Another Monet’s
painting shown in Figure 1(d) is a more complex example, with
more than twenty layers. We use this example to demonstrate that
we can change the appearance of the water by controlling the phys-
ical parameters. In Figure 3, we show look of the water under dif-
ferent wind speeds, directions, and simulation scales.
For Van Gogh’s sunflower painting (Figure 1(e)), we use our
stochastic wind model to animate the forty plant layers. With a sim-
ple sinusoidal model, the viewer usually can quickly figure out that
the plants swing in synchrony and the motion looses a lot of its
interest. With the stochastic wind model, the flowers’ motions de-
correlate in phase and the resulted animation is more appealing.

5 Conclusion and future work
In this paper, we have described an approach for animating still pic-
tures of a limited class of scenes—in particular, scenes that contain
passive elements responding to natural forces in an oscillatory fash-
ion. We envision this work as just the first step in the larger problem
of animating a much more general class of pictures.
Even for the scenes we can already animate, our system currently
makes a number of assumptions that we would like to relax. For ex-
ample, we assume that the elements of the input image are in their
equilibrium positions. This is often not the case in reality — for in-
stance, for a scene with water that already has ripples. Indeed, an
interesting challenge would be to use these ripples to estimate the
water motion and then animate it correctly. (In addition, rippling
water also alternates between acting as a transmitter and as a reflec-
tor near the Fresnel angle. This effect should also be incorporated.)
As another example, our method currently works best for trees at a
distance. For closer trees, it is difficult and tedious to segment the
trees properly. It would also be interesting to add shimmering inside
the trees to simulate leaf motion using some kind of turbulent flow
fields.
There are other classes of motion that could be modeled us-
ing a similar approach. For example, waterfalls could perhaps
be animated using a technique similar to “motion without move-
ment” [Freeman et al. 1991]. Ocean waves could be simulated us-
ing stochastic models, although matching the appearance of the still
poses some interesting challenges. Flying birds and other small ani-
mals could be animated using ideas from video sprites [Schödl et al.
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(a) composite (b) lower wind speed (c) wind of different direction (d) rougher water surface

Figure 3 We can control the appearance of water surface by adjusting some physical parameters such as wind speed. We show one of the composites (a) as the
reference, in which the wind blow at 5 m/s in z direction. We decrease the wind speed to 3 m/s (b) and change the wind direction to be along z axis (c). In (d), we
change the scale of the simulation to render water with finer ripples.

2000]. We believe that it might also be possible to animate fluids
like flame or smoke. However, this requires a constrained stochas-
tic simulation, since the state of simulation should resemble the ap-
pearance of the input image. Recent advances in controlling smoke
simulation by keyframes could be used for this purpose [Treuille
et al. 2003].
In our system, all the layers are hooked up together to a synthetic
wind force. Currently, the same wind force is applied everywhere
in the scene, albeit with different phases. It should not be too dif-
ficult to extend the formulation to handle a complete vector fields
of evolving wind forces in order to provide a more realistic style of
animation. In addition, we would like to add more controllability so
that the users could possibly interact with the trees individually.
Currently, we use physically-based simulation to synthesize a para-
metric motion field. One way to improve the quality of the motion
would be to use learning algorithms to transfer motion from similar
type of objects in videos. Indeed, the physically-based approaches
we use are based on empirically derived models. Learning the mo-
tion directly at the pixel level could give finer-gained motions. This
approach also might provide a type of “canned” motion library that
could be used to paint motion fields interactively onto a scene.
Our system now requires a fair amount of user interaction. For ex-
ample, to model a tree realistically, the user has to manually seg-
ment a tree into clumps and then draw a skeleton to connect them.
One way to reduce this burden would be to let the user sketch
branches on the tree, and let the system automatically figure out
how the tree should be subdivided and associated with the skeleton.
Another possibility would be to use multiple pictures as input. Most
modern digital cameras have a “motor-drive” mode that allows
users to take high-resolution photographs at a restricted sampling
rate, around 1–3 frames per second. From such a set of photographs,
we might be able to automatically segment a picture into several co-
herently moving regions and figure out the motion parameters from
the sample still images. It may also be interesting to combine high-
resolution stills with lower-resolution video to produce attractive
animations. Our approach could also be combined with “Tour into
the picture” to provide even richer control over animated pictures.
In conclusion, we are pleased by the ease with which it is possible to
breathe life into pictures, based on recent improvements in matting,
in-painting, and stochastic modeling algorithms and we feel like we
have only just begun to explore the creative possibilities in this rich
domain.
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