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Abstract. Given a photo of person A, we seek a photo of person B
with similar pose and expression. Solving this problem enables a form
of puppetry, in which one person appears to control the face of another.
When deployed on a webcam-equipped computer, our approach enables
a user to control another person’s face in real-time. This image-retrieval-
inspired approach employs a fully-automated pipeline of face analysis
techniques, and is extremely general—we can puppet anyone directly
from their photo collection or videos in which they appear. We show
several examples using images and videos of celebrities from the Internet.
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1 Introduction

“Ever wanted to be someone else? Now you can.”
—tagline from the film Being John Malkovich

In the film Being John Malkovich, a puppeteer (played by John Cusack)
discovers a portal that allows him to control the real life movements of John
Malkovich (played by himself). While puppeteering real people might seem a bit
far fetched, it should be possible to control digital likenesses of real people. In
particular, we seek to construct a photographic simulation (i.e., avatar) of John
Malkovich that you can control by moving your face; when you smile, move your
head, or close your eyes, you see John Malkovich doing the same.

One way to attack this puppetry problem might be to create a photo-realistic
3D model of John Malkovich’s head, instrumented with several degrees of free-
dom (e.g., mouth open, head rotate, etc.), and map the user’s head motions
to the model. Indeed, most prior work on avatars and puppetry has followed a
similar approach [1,2,3,4]. However, creating a sufficiently accurate model of a
real person is a major challenge, particularly if we don’t have access to the actor
to pose for a scanning session.

Instead, we recast the puppetry problem as image retrieval: given a query
image or video of person A (the user), and a set of images of person B (John
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Fig. 1. One person’s expressions (top row) are mapped to another person’s face
(bottom row) by real-time matching to an image database. In this case, the
input is a video of Cameron Diaz, and the database is formed from a video
(John Malkovich, bottom-left 4 images) or an unstructured set of photographs
downloaded from the Internet (George W. Bush, bottom-right 4 images).

Malkovich), find and display the best matching image or image sequence of
person B. This approach has a number of key advantages, as follows. First,
we avoid the complexity and technical difficulty of creating a 3D model and
parameterizing expressions. Second, because the output are real photos, we can
capture all the complexities of the face (hair, light scattering, glasses, etc.) that
are difficult to simulate. And finally, the approach operates on just about any set
of photos or video, and is fully automatic. I.e., it is possible to create an avatar
simply by typing an actor’s name on an image/video search site and processing
the resulting images and/or videos. The approach can also be used to drive one
video with another; Fig. 1 shows Cameron Diaz driving John Malkovich and
George W. Bush.

The main challenge to making this image retrieval approach work is defining a
metric that can reliably match an image of person A to an image of person B with
similar pose and expression. Significantly complicating this task is the fact that
the facial characteristics, lighting, and sex of the two people may be different,
resulting in large appearance variation between person A and person B. The main
contribution of this paper, in addition to posing puppetry as image retrieval, is a
processing pipeline that yields high-quality real-time facial image retrieval, and
that operates reliably on both video and unstructured photo collections. While
this pipeline is based on existing pieces from the literature, we argue that it is
not at all straightforward to create a real-time system that achieves the results
presented here; the contribution is the system and the novel application.

Our approach operates as follows: images of the target face (person B) are
processed using a combination of face detection, extracting fiducial features (e.g.,
eyes, nose, mouth), estimating pose, and aligning/warping to a frontal pose.
The user (person A) is tracked to determine head-pose at video rates. After
alignment, the user’s face is compared to all aligned images of the target face
using a fast implementation of Local Binary Patterns (LBP) and chi-square
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matching, and the best match is returned. We incorporate additional terms for
temporal coherence. We’ve found the resulting approach to work remarkably
well in practice. Fig. 2 shows our interactive web-cam-based system in action
for a case of a user driving George Clooney. Video captures can be found on the
paper’s website: http://grail.cs.washington.edu/malkovich/.

1.1 Related Work

There is quite a large literature on avatars, puppetry, and performance-driven
animation. We therefore limit our discussion to methods that specifically involve
tracking video of a user’s face to drive the appearance of a different person or
model. And while tracking mocap markers to drive scanned or hand-crafted
animated models is a mainstay of digital special effects (famous examples in
movies include Polar Express and Avatar), we focus here on markerless solutions
that operate from photos alone.

While there are a number of markerless puppetry techniques, the vast ma-
jority of these methods assume the availability of a 3D model of the target face,
e.g., [3]. A very recent example is the work of Weise et al. [4], who demonstrate
very impressive puppetry results using a real-time structured light scanner to
drive a previously captured 3D model. 3D puppetry via face tracking is start-
ing to becoming mainstream—Logitech’s webcams now come with software that
tracks a users’s face and gestures to control an animated on-screen avatar.

Pighin et al. [1] were among the first to demonstrate purely image-based
face capture and puppetry. In this work, the model was created by manually
specifying a set of correspondences between features on a 3D head model and
features in several photos of the person. More recent work in this vein includes
Zhang et al. [2] who used video to create the 3D model and simplified the manual
work to 5 features in two views.

Although they do not relate to puppetry per se, we are inspired by Kumar et
al.’s face search [5] and Bitouk et al.’s swapping [6] work, which operate robustly
on large collections of images downloaded from the Internet, and Goldman et al.
[7] who enable mouse-based face posing from a database of tracked video frames.

We note however, that no prior work has enabled puppetry with arbitrary,
unstructured photo collections. This capability dramatically broadens the appli-
cability of puppetry techniques, to any person whose photos are available.

2 Overview

Our system allows fully automatic real time search of similar facial expressions
of a target person given image queries from a webcam. The user can be any
person; there is no need to train the system for a specific user. The user can
make expressions to the camera, as well as change the pose of the head, and
get in real time similar expressions and poses of the target face. The target
face can be represented by a video or by a set of photos (e.g., photos of a
celebrity downloaded from the Internet). In each query frame the face is tracked

http://grail.cs.washington.edu/malkovich/
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Fig. 2. Our puppeteering system. Left - our setup. Right - screen capture of
our system: the face tracker applied on an input webcam video; Top grayscale
small pair - the input face after cropping and warping to frontal view and the
matching target face found by our method; Bottom large pair - user face and
matching target image (raw input).

automatically, the 3D position of the face is recovered, then the detected face
region is fitted to a template 3D model of a face and is warped to a frontal pose.
In the process, we estimate the location of the eyes and mouth of the user’s face.
We consider each of these regions independently and for each region compute a
Local Binary Patterns (LBP) feature vector. The same is done for each photo (or
video frame in case a movie is available) of the target person. We then compute
distances between the mouth region of the target face and the mouth region
of the user face, and similarly for the eyes regions. These two distances define
our appearance distance. In addition, we compute the distance between the 3D
pose of the user and the 3D pose of the target in each image, and a temporal
continuity distance. These three distances are combined together to find the best
match in terms of appearance, pose and continuity. We describe our geometric
alignment method in Section 3, and the appearance representation in Section 4.
In Section 5 we present our distance function. Results and evaluations of the
method are presented in Section 6.

3 Image alignment to canonical pose

In this section we present a framework to align the images of the user and target
faces to a canonical (frontal) pose. The input to the method is a live video feed
(e.g., webcam) or a video of a person. We first automatically track the face in
each frame of the video, using the algorithm of Saragih et al. [8]. The aim here
is to estimate the location of the face and its pose in each given frame, and use
these to perform warping of each image to a canonical pose.

[8] is based on fitting a parametrized shape model to an image such that its
landmarks correspond to consistent locations on the face. In particular, in each
frame, predictions regarding locations of the model’s landmarks are made by
utilizing an ensemble of local feature detectors, and then combined by enforcing
a prior over their joint motion. The distribution of the landmark locations is
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Fig. 3. Results of our warping procedure (based on 3D pose estimation and
using 3D template model). Top row: images aligned in 2D . Bottom row: warped
images (3D alignment).

represented non-parametricaly and optimized via subspace constrained mean-
shifts.

For the target person, in case we have a video available we estimate the lo-
cation of the face and landmarks using the same procedure as the user’s face.
In case the target face is represented by a collection of photos we cannot use
tracking. We instead apply a face detector [9] followed by a fiducial points detec-
tor [10] that provides the landmarks (the left and right corners of each eye, the
two nostrils, the tip of the nose, and the left and right corners of the mouth).
Given the landmark positions we recover the 3D position of the face. For this we
use a neutral face model from the publicly available spacetime faces dataset [11]
as our template model. Given the points on the image and the corresponding
pre-labeled points on the 3D template model we first subtract the centroid from
each of the point arrays, recover a linear transformation between them and then
find rotation and scale using RQ decomposition. The yaw, pitch and roll angles
are then estimated from the rotation matrix.

Given the estimated pose we can transform the template model to the ori-
entation of the face in the image, and consequently warp the image to a frontal
pose. In Figure 3 we show a few examples of images warped using this procedure.

4 Appearance representation

Once the images have been aligned and warped to a frontal pose, the next step
is to compare the appearance of the faces to find similar facial expressions. Since
all images are aligned to a template model we can identify the areas in the image
that correspond to different face regions. In this paper we concentrate on the
regions that correspond to eyes and mouth, however one can consider comparing
other regions as well (e.g., position of eyebrows).

To compare appearance of facial regions we have chosen to use the Local
Binary Pattern (LBP) histograms [12], which have previously proven effective-
ness for face recognition [13] and facial expression recognition. These methods
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however were applied on frontal faces captured with similar conditions (lighting,
resolution etc.). In our case (especially in the case of unstructured photo col-
lections) these conditions do not often hold. However our alignment step that
warps the face to frontal position compensates for pose differences and allows us
to effectively use LBP features for comparison of facial regions.

LBP operates by converting each pixel into a code which encodes the relative
brightness patterns in a neighborhood around that pixel. In particular, each
neighbor is assigned a 1 or 0 if it is brighter or darker than the center pixel. This
pattern of 1’s and 0’s defines a binary code that is represented as an integer.
Explicitly the LBP code is defined as:

LBP (c) =

|N |−1∑
p=0

2pH(Ip − Ic), (1)

where H(x) = 1 if x > 0 and 0 otherwise, Ic and Ip are the intensities of the
center pixel and neighboring pixel correspondingly, and N is a set of neighbors
of the center pixel c. The histogram of these codes defines the descriptor for each
facial region. For example in case the neighborhood around a pixel is chosen to
be 3x3 square, there are 8 neighbors, and so there are 28 = 256 labels (or bins in
the histogram). Intuitively each code can be considered as a micro pattern, that
encodes local edges, homogenous areas and other primitives. The binarization
quantization achieves robustness to small lighting changes and robustness to
small motions is obtained by forming the histogram. Following [12] for each
pixel we use a circular neighborhood around it and bilinearly interpolate values
at non-integer pixel coordinates. We further use the extended version of the
operator, called uniform code, that reduces the length of the feature vector. A
code is called uniform if it contains at most two transitions between 0 to 1 or
vice versa. In the computation of the LBP histogram each uniform code has its
own label and all non-uniform codes get a single label.

5 Distance metric

Distance between two facial regions is defined by χ2-distance between the cor-
responding LBP descriptors. χ2 is defined as:

χ2(x, y) = 1/2
∑
i

(xi − yi)2/(xi + yi), (2)

where in our case x and y are two LBP descriptors. To compare the mouth region
we divide it to 3x5 cells and sum up the distances of all cells, each eyes region
is divided to 3x2 cells (the whole face is divided to 15x7 cells). Figure 4 shows
the masks we use.

Given an input image i we compare it to all target’s images j. Our appearance
distance function between each frame i and image j is defined as

dappear(i, j) = αmdm(i, j) + αede(i, j) (3)
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Fig. 4. The regions we use in our appearance distance. The image is aligned to
a canonical pose and divided to 15x7 cells. The mouth region (marked in red)
is divided to 3x5 cells and each eye region (marked in green) is divided to 3x2
cells.

where d{m,e} are the LBP histogram χ2-distances restricted to the mouth and
eyes regions, respectively, and α{m,e} are the corresponding weights for these
regions. For example, assigning αm = 1 and αe = 0 will result in only the
mouth region being considered in the comparison. Prior to the combination of the
mouth and eyes distances we normalize each of these by subtracting the minimum
distance (over the target images) and dividing by the maximum distance.

Our complete distance function also includes difference in pose and a tem-
poral continuity term. The difference in pose is measured separately for yaw
Y , pitch P and roll R, and each of these is normalized using a robust logistic
function. The pose term is:

dpose(i, j) = L(|Yi − Yj |) + L(|Pi − Pj |) + L(|Ri −Rj |) (4)

where the logistic function L(d) is defined as

L(d) =
1

1 + e−γ(d−T )/σ
(5)

with γ = ln(99). It normalizes the distances d to the range [0, 1], such that the
value d = T is mapped to 0.5 and the values d = T ± σ map to 0.99 and 0.01
respectively. The temporal continuity term computes the appearance distance
between the previous input frame i−1 and all the target images j. The complete
distance function is then:

D(i, j) = dappear(i, j) + αpdpose(i, j) + αtdappear(i− 1, j) (6)

where αp,αt are the weights of the pose and continuity terms. The best match
per input frame is the target image that minimizes D(i, j).

6 Results

In this section we give details on our experimental setup. The performance of
the method is much better conveyed through videos; for the video captures and
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(a) Full measure

(b) Without mouth similarity

(c) Without eyes similarity

Fig. 5. Puppeteering evaluation. We recorded a video of person A (70 frames)
and a video of person B of similar length. (a) 7 frames from person A video
(first row); The corresponding frames of person B using the combined measure
- mouth+eyes+pose (second row); (b) The corresponding frames without mouth
measure - only expressions with high correlation between the eyes and mouth
(like surprise) have similar mouth expression (third row). (c) Person A and the
corresponding matches of B without eyes measure - the eyes are flickering across
consecutive output frames.

more results please see the paper’s website: http://grail.cs.washington.edu/

malkovich/. We have experimented with controlled experiments as well as videos

http://grail.cs.washington.edu/malkovich/
http://grail.cs.washington.edu/malkovich/
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of celebrities downloaded from the Internet1. We also used the unstructured
collection of photos of George W. Bush from the LFW database [14] as a target
dataset. We begin by describing the implementation details of our system and
then describe the exprimental results.

6.1 Implementation details

We use the following parameters for all experiments: αm = αe = 1, T = 5,
σ = 2, αp = αy = αr = 0.2, αt = 0.2. Before we apply our distance function we
ignore from consideration target images that differ in pose from the user image
by more than 5o (for yaw, pitch and roll). The LBP histogram is calculated per
image cell using Gaussian weighting as a function of pixel’s distance from the
center of the cell. The sigma we used is the width of the cell with a margin in
the size of half of the cell.

The system runs at 7fps on a 2.26GHz Intel Core 2 Duo Macbook Pro. The
images or video used to create the target dataset are processed using the same
pipeline as the input video of the user, i.e., tracking the face (or detecting in
case of unstructured photo collection), estimating the pose in each frame and
calculating the feature vectors. When constructing the target dataset from a
video, we sample every 3rd frame of the video. Processing a video of 1000 frames
takes approximately 2.5 minutes.

6.2 Controlled experiments

To evaluate performance, we captured videos of two people with different facial
characteristics making similar facial expressions and used one person’s video to
drive the other video. We also evaluated the effect of comparing different regions
of the face (eyes only or mouth only) on overall performance. Figure 5 shows the
results of this experiment. We can see that the match is remarkably good when
both eyes and mouth are used, despite the different facial appearance of these
two users (note that one is Asian and has a mustache while the other has neither
of these characteristics). When the mouth is omitted in the metric, the pose and
eyes are matched, but the expression remains relatively constant, except for the
example in column 4, where eyes of the “surprise” expression are well-correlated
with the mouth. Similarly, when the eyes are left out of the distance metric, the
output sequence exhibits random blinks.

6.3 Videos of celebrities

We downloaded and processed videos and still photos for several celebrities from
the Internet. Figure 6 shows an example of puppeteering George Clooney; the
user (top row) makes facial expressions and the best matching frame from George

1 Cameron Diaz–http://www.youtube.com/watch?v=fWHgZz809Pw
George Clooney–http://www.youtube.com/watch?v=iZyw5-Sm0Zk
John Malkovich–http://www.mefeedia.com/watch/23930904

http://www.youtube.com/watch?v=fWHgZz809Pw
http://www.youtube.com/watch?v=iZyw5-Sm0Zk
http://www.mefeedia.com/watch/23930904
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Fig. 6. Puppeteering George Clooney. A few frames of the user captured by a
webcam, followed by the corresponding retrieved faces of George Clooney (the
target database consists of 1197 video frames).

Clooney’s video is shown at the bottom. Note how both, the eyes of the user
and the eyes of George Clooney close in the 3rd example from the left, and how
the mouth changes are quite consistent. Figure 7 shows results of puppeteering
Cameron Diaz, (a) shows a sample of the good matches and in (b) we show
some failure cases. Most of the failure cases seem to be due to the combination
of an expression and pose that do not exist in the video/collection of photos
of the target face. Similarly, we show an example where a user is able to drive
an unstructured photo collection of George W. Bush obtained from the Internet
(Figure 8). We also show an example of driving a video using another video in
Figure 9. More examples are shown in Figure 1. In our experiments, we observed
that when the user and the target face are of the same gender (woman to woman
and man to man) the output sequence is smoother and better captures the
expressions, due to similar facial features. However, we observed that the method
also works quite well with a man driving a woman and vice versa (as shown in
these figures).

7 Conclusions

We presented a real-time puppetry system in which the user can make a celebrity
or other person mimic their own facial gestures. As with traditional puppetry,
part of the fun is learning how to master the controls. In particular, the user
often learns to best drive the celebrity (rather than the other way around); to
make John Malkovich smile, the user may have to smile in a similar style to the
celebrity.

Unlike most prior work in this area which maps an image to a model, our
formulation is photo to photo, using metrics that seek to match facial pose and
eye/mouth similarity. The key advantage of this approach is its generality—
it operates fully automatically and works on just about any video or photo
collection of a person.
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(a) A sample of good matches

(b) Some failure cases

Fig. 7. Puppeteering Cameron Diaz. (a) A few frames of the user captured by
a webcam, followed by the corresponding retrieved faces of Cameron Diaz (the
database is a video of 1240 frames). (b) Some failure cases - most failures are
due to a combination of an expression with pose of the user that do not exist in
the target database. In this example the proportion of good/bad matches was
around 0.7/0.3.

Beyond our puppetry application, this is also a general solution for face image
retrieval, i.e., one can search for photos by acting out a particular expression
and pose. In addition this allows to use unlabeled datasets and to retrieve facial
expressions that are difficult to define with keywords.

There are several aspects of performance that could be improved. While
LBP provides some robustness to lighting changes, shadows and other strong
effects sometimes bias the match to similar lighting instead of similar expression.
Better tracking and modeling of head shape could also increase the operating
range, particularly with near-profile views. Finally, we use a first order model
for temporal coherence; a more sophisticated model could result in temporaly
smoother output.
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Fig. 8. Puppeteering an unstructured dataset of George W. Bush. A few frames
of the user captured by a webcam, followed by the corresponding retrieved faces
of George W. Bush (the target database is a collection of 870 photographs of
George W. Bush).

Fig. 9. Puppeteering John Malkovich with a video of Cameron Diaz.
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