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Figure 1. Given a pair of images (first and last in the sequence) the in-between photos are automatically synthesized using our flow
estimation method. Note the significant variation in lighting and facial expression between the two input photos.

Abstract

Computing optical flow between any pair of Internet face
photos is challenging for most current state of the art flow
estimation methods due to differences in illumination, pose,
and geometry. We show that flow estimation can be dramat-
ically improved by leveraging a large photo collection of the
same (or similar) object. In particular, consider the case of
photos of a celebrity from Google Image Search. Any two
such photos may have different facial expression, lighting
and face orientation. The key idea is that instead of comput-
ing flow directly between the input pair (I, J), we compute
versions of the images (I', J') in which facial expressions
and pose are normalized while lighting is preserved. This
is achieved by iteratively projecting each photo onto an ap-
pearance subspace formed from the full photo collection.
The desired flow is obtained through concatenation of flows
(I = I')o (J' — J). Our approach can be used with any
two-frame optical flow algorithm, and significantly boosts
the performance of the algorithm by providing invariance
to lighting and shape changes.

1. Introduction

Despite significant progress in optical flow research,
most methods are based on an assumption of brightness
constancy; hence performance significantly degrades under
differences in shading, due to lighting variations or changes
in surface normals. An extreme case is estimating flow
between photos of George Clooney and George W. Bush
above, in which pixel intensities vary dramatically between
the two input photos (first and last photo in Fig. 1).

Rather than considering optical flow as a purely pairwise

correspondence problem, in this paper we propose to lever-
age a large collection of similar photos to enable flow com-
putation with changes in lighting and shape. As such, we
are motivated by the vast stores of imagery available on the
Internet and in personal photo collections; for any photo,
you can find many more just like it. The case of faces is par-
ticularly interesting—we have access to thousands of pho-
tos of any celebrity (through Internet search), and a simi-
larly large number of friends and family members (through
tools like iPhoto or Facebook). Such collections implicitly
describe the “appearance space” of an individual by cap-
turing the subject under many poses, lighting, and expres-
sions. The challenge is to model and leverage this appear-
ance space for optical flow estimation. While we focus our
attention on face applications, the approach does not em-
ploy face-specific assumptions and may be applicable more
broadly to other families of objects that can be aligned to a
common reference.

Instead of inventing a new optical flow algorithm, we
seek to boost the performance of existing algorithms by
normalizing (removing) confounding factors. For example,
suppose we were able to normalize illumination, i.e., re-
render the second image with the illumination of the first—
this would likely lead to better flow performance with exist-
ing algorithms. However, this re-rendering task is not at all
straightforward, as it would seem to require estimating the
3D shape corresponding to the second image and the light-
ing in both images. And even if we were able to do this, note
that matching illumination is not sufficient, as the surface
normals may change with the facial expression, leading to
shading differences even with the same illumination. Simi-
larly, the albedo or image exposure may also vary between
shots.
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Figure 2. To compute flow from image I to J, we first project
both images to a common neutral expression (brow relaxes in I,
mouth closes in J'), then compute flow(7,I") and flow(J', J).
Observe how the neutral projections retain the shading, exposure,
and color balance of the original; brightness constancy is much
better satisfied between (I, I') and between (J, J') compared to
the original image pair (I, J). The desired flow is then obtained
through concatenation of (I — I') o (J' — J).

Rather than normalize shading, we propose to normal-
ize expression. The key idea is to project each input photo
onto a low-dimensional appearance subspace that retains
the shading but converts the expression to neutral. Rather
than computing flow between the image pair (I, J) directly,
we instead compute flow between each input photo I and its
normalized version I’, which yields the flow to a common
expression (Figure 2). The flow between the input image
pair is obtained through concatenation of (I — I') o (J' —
J).

Our approach is based on the well-known observa-
tion [6, 21, 19, 1, 7, 2, §] that in image collections with
lighting variations, the first few eigenfaces (PCA compo-
nents) tend to capture shading effects very well. While these
prior results apply only to rigid scenes, in this paper we
observe that the first few PCA components of large image
collections of faces with expressions (non-rigid shape vari-
ations) and lighting variations capture mostly the shading,
i.e. shading changes dominate expression changes. Hence,
projecting onto a low-rank subspace has the effect of remov-
ing most expression differences among the photos. In prac-
tice, however, the low-rank projection tends to smooth out
fine details (which are important for optical flow). We there-
fore introduce an iterative approach that computes flow and
warps each image to its low rank projection, re-estimates
the low-rank subspace, and repeats until convergence. The

resulting subspace does a much better job of matching the
illumination, shading changes, albedo, and imaging condi-
tions, e.g., non linear camera response and white balance,
while still reducing the expression to neutral.

Another advantage of our approach is that it requires
only O(n) flow computations to derive pairwise flows
across a collection of n images, instead of running optical
flow for all O(n?) image pairs. This performance improve-
ment is significant for large collections, and is achieved by
computing flow to a neutral reference and deriving the pair-
wise flows via concatenation.

The paper is organized as follows. Section 2 summa-
rizes related work in optical flow. Section 3 introduces the
idea of expression normalization and analyzes its proper-
ties. Section 4 introduces the collection flow algorithm, and
Section 5 presents results.

2. Related work

Classical work on optical flow is based on an assump-
tion of brightness constancy. While most modern optical
flow methods also employ this constraint, there are a num-
ber of notable exceptions. In particular, several researchers
have explored ways to generalize the optical flow constraint
equation to handle certain types of intensity changes rang-
ing from bias-gain variations [13], physically-based radio-
metric changes [12], and other parametric changes in the
intensity field [17]. HaCohen et al. [10] solve for a global
parametric color change in concert with solving for opti-
cal flow. All of these methods operate by introducing ad-
ditional parameters to solve for, and thus require more re-
liance on smoothness to regularize flow. Another avenue
for coping with illumination changes is to incorporate more
robust matching techniques, e.g., SIFT flow [16].

Begining with Pentland [18], several authors [25, 22]
have explored the special case of optical flow generated by
a rigid scene moving under fixed or variable illumination.
In these cases, the lighting and/or object motion is usually
assumed to be known, and the problem reduces to recon-
structing the scene geometry.

More related to our work, Hager and Belhumeur demon-
strated illumination-invariant tracking via linear combina-
tion of a set of template images of an object under differ-
ent lighting [11]. While they limited their scope to simple
parametric motions (e.g., rotation, translation, scale), our
approach is inspired in part by their insights.

For the specific case of faces, there is a large literature
on tracking and alignment techniques. However, few of
these techniques provide dense optical flow fields, are fully
automated, and work robustly in the presence of illumina-
tion changes. [26] compute nonrigid facial motion under
“moderate” illumination changes, by introducing an outlier
model and allowing for local bias-gain variations.
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Figure 3. (a) Selected input photos, (b) rank-4 projection: expres-
sion is neutralized, (c) rank-12 projection: better match to input
photo (e.g. sharper), but expression no longer neutral, (d) rank-12
warped projection using our flow algorithm: much better matching
to input photo while expression is neutralized. All input images
were warped to frontal prior to rank projection.

3. Expression normalization

Suppose we are given a collection of photos of a person’s
face captured “in the wild”, i.e., in unconstrained condi-
tions. Suppose, for the moment, that the faces are all frontal
(we will relax this later), but that face expression, lighting,
albedo, image exposure, age, and other factors may change
from one image to the next. Figure 3(a) shows a sample
of such images downloaded from Google Image Search for
George W. Bush. Our objective is to compute optical flow
between any pair of such images.

Now try the following experiment: put all n photos into
a matrix M where each column corresponds to the pixels
in one image laid out in a vector. Compute the best rank-
4 approximation M, of M, by forming the singular value
decomposition and setting singular values 4 — n to zero.
Now display each column of M, as a 2D image and com-
pare with the original photo (corresponding column of M),
as shown in Figure 3(b). The resulting images capture most
of the original lighting and shading, but the expression has
been changed to neutral!

Indeed, this phenomenon has been observed previously
in the face recognition literature, as the first few eigenfaces
are often dominated by shading effects (Figure 4). The same
effect has also been observed recently in the context of pho-

tometric stereo [14]. However, this phenomenon is still not
understood. In this section, we analyze the reasons for this
behavior, bringing together known results in this area and
contributing new observations. Furthermore, we identify
limitations of this approach for expression normalization
and propose more powerful expression normalization tech-
niques. In Section 4, we present a method that leverages
expression normalization for optical flow estimation.

3.1. Low-rank projection

Why does the expression get normalized under low-rank
projection? For a rigid Lambertian scene under directional
lighting, M is known to be low rank; rank-3 with no shad-
ows [21], rank-9 with attached shadows [19, 1]. In partic-
ular, more than 90% of the image energy is in the first 4
basis images [7]. Similar theoretical [2, 8] and empirical
[6] results have been shown for non-Lambertian scenes as
well.

As these results apply only to rigid scenes, we now turn
our attention to the non-rigid case. Our main observation is
that the change in image intensities caused by non-rigid face
motion is typically small compared to the effect of chang-
ing the illumination. The intuition is that face motion due
to expression change (not head rotation) has three compo-
nents: 1) changes in intensity caused by optical flow, and
2) shading changes caused by shape deformation (chang-
ing surface normals), and 3) changes in visibility (e.g., open
mouth). The first component is significant only at edges, the
second component is significant only at wrinkles and dim-
ples, and the third is most pronounced only in the mouth and
eyes—all effects are sparse in the image. These effects are
dominated by the intensity changes induced by moving the
light source, which affect all pixels and can be very large.

To formalize this argument, lets assume the lighting is
fixed, but the facial expression (geometry) changes between
images I and I’. To facilitate analysis, we ignore occlu-
sions and assume the motion is small enough that we can
approximate the images as consecutive in time ¢. Assum-
ing Lambertian reflectance and directional illumination, the
image intensity at each image point (z, y) is given by:

I(z,y) p(z,y)(h +1"n(x,y))
I'z+u,y+v) = plz,y)(l +170" (@ +u,y+v))

where u = (u, v) is the flow, p(x, y) is the albedo (scalar for
each point on the object), /; is ambient and 1 are directional
lighting coefficients and n(z, y) is the surface normal vector
at each point on the surface. Linearizing I’ leads to the
following optical flow equation:

dI T d
7 —VIu-—pl an. (D

The left hand side of this equation is the pixel intensity dif-
ferences between the images, and the right hand side ex-
plains these differences in terms of two components: a term
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Figure 4. Left singular vectors for Internet images of George Bush, with magnitude decreasing left to right. Observe that the first 4 images
span the shading variation of a neutral face, whereas subsequent images capture facial expression and other effects.

depending on image gradients, and a second term depend-
ing on changes in surface normal. Let’s examine each of
these terms. The first term V/u is significant only where
the image gradient is large. However, large gradients are
sparse in natural images and even more so for faces [24]
which are dominated by smooth regions. Hence, this term
will have a limited effect overall. The second term plT %n
captures the change in shading due to changing surface nor-
mals. Note, however, that changes in local surface orienta-
tion are somewhat limited due to the elastic tension of skin
and constrained bone/muscle movement. For example, no
matter how much you deform your face, most points on the
right side of your face will have normals pointing to the
right. Contrast this to lighting changes, which can create
arbitrary changes in 1 and affect nearly every pixel in the
image. Therefore, both terms, and hence % are small rel-
ative to the intensity changes caused by large illumination
changes.

In short, the reason why rank-4 projection normalizes ex-
pression is that 1) lighting changes dominate the variance in
image pixels, hence the top singular vectors will model il-
lumination effects, not expression changes, and 2) a rank-4
projection captures 90% of the shading effects due to illumi-
nation. Hence, a rank-4 projection will generally have the
effect of normalizing the expression and roughly matching
the lighting. We note this analysis applies only when the
lighting variation in the image collection is large. If the
light source is constant or moves less than the normals on
the face, expression changes will dominate.

3.2. Higher rank projections

This expression normalization effect with rank-4 projec-
tion is very compelling, however it has a number of limita-
tions. First, the rank-4 basis captures an average face, with
fine details smoothed out (Figure 3(b)). Second, the illumi-
nation of the rank-4 projection will only roughly match that
of the input image due to expression changes. Third, the
rank-4 projection is not sufficient to capture the changes in
surface shape due to the expression change, i.e., the surface
normals are not precisely matched so brightness constancy
will be violated to some extent. Finally, higher-rank pro-
jections may be needed to get a more accurate match to the

input image to account for effects like shaving a beard or
getting a suntan which may cause very significant intensity
changes over a large region of the face.

Figure 3(c) shows the result of a rank-12 projection in-
stead of rank-4. Indeed, increasing the size of the basis re-
sults in a more faithful fit to the original photo. However,
the expression normalization property (observed with rank-
4) is lost with rank-12. In the rest of the paper, we will
show how to capture higher order effects (most importantly
to capture the intensity change due to surface shape varia-
tions) while retaining the normalization property.

3.3. Warped projections

Suppose we had precise pixel-to-pixel correspondence
and could map all of the input photos onto a single reference
expression. Ignoring occlusions, this allows us to remove
optical flow effects, and explain the appearance changes
purely in terms of geometry and reflectance changes. In
particular, let’s represent the key expressions using a set of
k basis shapes, each with a set of surface normals n;(z, y),
and albedos p;(x,y) for i = 1...k. By combining these
basis expressions, we can represent any face in their linear
span'. If the scene is Lambertian, we can thus capture this
space of expressions with a rank 4k basis. Note that this
representation allows capturing not just changes in shape,
but also changes in albedo, e.g., due to growing a beard,
getting a suntan, or applying makeup. Similar arguments
apply for modeling exposure changes or nonlinear camera
response curves (approximated as linear combinations, as
in [9]).

Hence, low-rank approximation is an even more power-
ful tool when the input photos can be aligned. Figure 3(d)
shows the result of a rank-12 projection on an warped im-
age set generated using the method in Section 4. Note how
both lighting and fine details (e.g., red mark on his nose
in center image) are much more accurately match between
the aligned result and the original input images, while still
maintaining the expression normalization property. In the
next section, we introduce an iterative approach for con-

IWith the caveat that the normals must be integrable, or will be pro-
jected onto the closest integrable set.



structing a warped face space and solving for flow in tan-
dem.

4. Flow estimation algorithm

We seek to compute optical flow between any pair of n
photos from a large collection of a person’s face. Because
lighting changes degrade optical flow performance, we pro-
pose to leverage expression normalization as shown in Fig-
ure 2. Le., given a pair of images (/, J), we first compute
expression normalized versions (I’,.J') and compute flow
from I to I’ and J’ to J, the composition of which yields
the desired flow field from I to J. Hence, solving the pair-
wise flow problem reduces to computing the flow (I,1")
between each photo and its expression normalized version.
This reduction also enables calculating all n? pairwise flows
with only O(n) runs of an optical flow algorithm.

We begin by computing I’ using rank-4 projection, as
described in Section 3.1, and estimate flow between I and
I’. We could stop here. However, due to the limitations
with rank-4 projection, as discussed in Section 3.2, better
results can be obtained by producing a warped projection,
as described in Section 3.3. We accomplish this by warp-
ing each input photo to its normalized expression, using
the recovered flow. We iterate these steps (project, compute
flow, warp) until convergence while increasing the projec-
tion rank gradually in each iteration, enabling progressively
more accurate image reconstructions. More details are pro-
vided below.

Note that any flow algorithm can be used to compute
these intermediate flow fields (I, I’)—we are not inventing
a new flow algorithm, rather adjusting the input images to
fit the operation range of any state of the art optical flow
estimation method by leveraging large photo collections.

4.1. Iterative alignment

Given a set of frontal or pose-corrected images (details
on pose correction in Section 5), we apply the following
algorithm:

1. k = 4, initialize flow fields F; to identity, stack input
images as columns of matrix M.

2. compute rank-k singular value decomposition M, of

M, extract projected images I from columns of Mj,

compute flow F; from I/ to I;

inverse warp I; to I using flow F;

k=k+1

repeat step 2 until flow converges

AN i

In every iteration, we both improve the alignment, and
increase the rank of the projection, allowing more accu-
rate modeling of fine details. It is important that the rank
be small initially and increase slowly, to avoid capturing
expression changes in the basis (we seek a projection that
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Figure 5. Plot of % total energy (y-axis) captured by singular val-
ues 1-x as a function of collection flow iteration. E.g., after 15
iterations, the first 15 singular values capture 50 % of the energy
(up from 40% initially). This shows that after the iterative proce-
dure, significantly more of the energy is captured in the first few
singular values. L.e., the aligned images are better fit by the linear
model than the original set of images.

normalizes expression). In early iterations, the low-rank
projection strongly regularizes the alignment, compensating
for imperfect flow. Then, as more basis images are added,
the projection quality and flow improves, thus improving
the alignment. The additional basis images add more de-
grees of freedom in the surface normals (effectively adding
additional basis “shapes”) and albedos, as discussed in Sec-
tion 3.3, enabling the projection to fit not just the lighting,
but also changes in intensity due to shape and reflectance of
the input.

Specifically, by increasing the projection rank and re-
warping the images with each iteration, the projection ac-
counts better for the surface normal difference term plT % n
in Eq. (1). This term is usually ignored in most optical flow
methods [23]. Figure 5 plots the improvement in alignment
quality over iterations.

So far, we have assumed that the lighting variations are
large (which is typical in Internet collections). If this is not
the case, choosing a smaller initial value for k£ could make
sense. If the lighting is constant, for example in the case of
a photos in a high school yearbook, £ = 1 may give the best
results; in this case, each face will initially be registered to
the average face (with linear intensity scaling).

5. Experiments

In this section, we discuss results of our algorithm on
several image collections of celebrities downloaded from
Google Image Search and a personal photo collection. We
first describe how we pre-process the downloaded collec-
tions and correct for rigid pose variation. We further discuss
details related to the flow estimation approach and running
times, show our expression warping results and compare
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Figure 6. Histogram of number of images (of George Bush) vs.
number of iterations needed to converge. E.g., most images re-
quired fewer than 15 iterations.

with state-of-the-art optical flow algorithms.
Preprocessing and rigid pose correction: We downloaded
about 800 photos per person and used Picasa to identify
and recognize faces. We used the preprocessing pipeline
from [14] that includes face and fiducials detection, pose es-
timation and warping to frontal pose, and masking the face
region, which successfully registers about 500 photos per
person. We eliminate photos with extreme poses (filtered
by pitch and yaw, i.e. we kept photos within the range of +
25 degrees yaw and + 5 degrees pitch angles), leaving about
400 photos per person. Fig. 7 (a) shows example input im-
ages, and (b) the same images warped to frontal position by
this procedure. Flow is then computed on pose corrected
and masked images.

Flow estimation details and running times: We estimated
flow between pairs of photos of the same person and also
between different people. The approach operates robustly
for a wide range of variations, e.g., pose, expression, light-
ing, age, and identity. For collections containing a single
person we used N = 400 photos. For collections containing
two people, we used N = 600 (300 for each person). The
algorithm we chose for flow estimation between each im-
age and its low rank projection is Ce Liu’s [|5] implemen-
tation of Brox et al. [3] combined with Bruhn et al. [4]. We
use the following parameters in their implementation: o =
0.01, ratio=0.75, minWidth=60, nOuterFPIterations=>5,
nlnnerFPlIterations=1,nCGlterations=50. The running time
of each flow estimation is around 4 sec.

The total running time of our algorithm is therefore
Niter*(SinglePairFlow*N + pcaTime) where SinglePair-
Flow is the time takes for flow estimation between one pair
of photos, N number of photos in the collection and pca-
Time is the time takes to compute the low rank projection
images at each iteration. The number of iterations is plotted
in Fig. 6. We observed that images that are similar to many
others in the collection typically need fewer iterations (e.g.,
less than 10 iterations), whereas rare poses, expressions, or
illuminations require more. We stop computing flow for

(a) Example input images

@5@@

(b) Warped to frontal pose

’ l

(c) Estimated flows to neutral

$68SS

(d) Warped to neutral expression
Figure 7. Pose normalization pipeline. (a) A few example images,

(b) rigid pose correction, (c) estimated flow to neutral (color-code
in the upper right), and (d) images warped using the flow.

an image when the L2 norm of the difference between the
current estimated flow and the one in previous iteration is
below a fixed threshold=20. To estimate the low rank pro-
jections we use the randomized PCA algorithm of Rokhlin
et al. [20] that typically takes 0.8 sec on a matrix produced
from 400 images of size 200 x 150. Running optical flow
on all pairs with 400 photos would take 177 hours. Using
our collection flow method with 15 iterations per image re-
quires 7 hours (this is the O(n) vs. O(n?) savings).

Facial expression normalization: Fig. 7 (c) shows several
estimated flows and (d) shows the faces warped using the
flows to neutral expression.

Morphing: We apply a standard morph effect by warping
each input photo to the desired in-between (linearly inter-
polating the flow) and cross-fading the results. We further
augment the effect by linearly interpolating the poses of
the two input images and applying pose correction. Fig. 8
shows several results illustrating changes in expression,
pose, lighting, age, and identity (input images at far left and
right). See supplementary material for videos of these
transitions. The fact that the in-between photos look sharp
and lack ghosting artifacts is an indication of high quality
flow.

Comparison to leading flow algorithms: We compare
collection flow to other state-of-the-art flow methods: 1)
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Figure 8. Morphing sequences: far left and right images are given as input and all the in-between views are automatically synthesized by

our method.

Liu’s [15] implementation of Brox et al. [3] combined with
Bruhn et al. [4], 2) SIFT flow [16] and 3) dense duality
based TV-L! optical flow by Chambolle and Pock [5]. Fig. 9
presents the results. We ran all flow algorithms on pose-
corrected and masked images (results are worse on the orig-
inal photos). I, J are the input images, (a) shows J warped
to I, (b) vice versa, and (c) show the morphed image (at
the midpoint of the transition). These input images are
particularly challenging, due to the dramatic illumination
and shape differences (brightness constancy is strongly vio-
lated), and collection flow produces significantly better re-
sults. For image pairs with less variations, the performance
difference between algorithms is less significant. Please see
the supplemental material for other comparisons and video
versions of the morphs.

6. Summary

In this paper, we presented a method for optical flow es-
timation between a pair of images allowing variations due
to lighting, non-rigid surface shape changes, and pose. Our
key idea is to estimate flow between the input images by
leveraging large photo collections. Traditional optical flow
estimation methods assume brightness constancy and resort
to smoothing to account for its violations (e.g., when the
input images have different lighting). In contrast we have
shown that lighting and shape variations can be accounted
for by projecting the input images to a reduced appearance

space constructed from photos of the same person. This
reduction dramatically improves flow computation in un-
structured photo collections. We have also analyzed the low
dimensional representation of a person’s photos in the pres-
ence of both lighting and non rigid shape variations. While
we focused on faces in this paper our approach maybe ap-
plicable more generally.
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